[1]任利彤,黎博文,赵思,等.杨木预水解过程中化学组分的降解行为及P因子调控作用[J].林业工程学报,2020,5(02):103-108.[doi:10.13360/ j.issn.2096-1359.201905037]
 REN Litong,LI Bowen,ZHAO Si,et al.Effect of P factor on degradation of poplar chemistry composition during prehydrolysis process[J].Journal of Forestry Engineering,2020,5(02):103-108.[doi:10.13360/ j.issn.2096-1359.201905037]
点击复制

杨木预水解过程中化学组分的降解行为及P因子调控作用()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
103-108
栏目:
林产化学加工
出版日期:
2020-03-11

文章信息/Info

Title:
Effect of P factor on degradation of poplar chemistry composition during prehydrolysis process
文章编号:
2096-1359(2020)02-0103-06
作者:
任利彤1黎博文1赵思1冯年捷1*吴茜2
1. 湖北工业大学材料与化学工程学院,武汉 430068; 2. 湖北工业大学生物工程与食品学院,武汉 430068
Author(s):
REN Litong1 LI Bowen1 ZHAO Si1 FENG Nianjie1* WU Qian2
1. School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; 2. School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
关键词:
杨木 化学组分 预水解 降解 P因子
Keywords:
poplar chemical composition prehydrolysis degradation P factor
分类号:
TQ35
DOI:
10.13360/ j.issn.2096-1359.201905037
文献标志码:
A
摘要:
预水解具有环境友好性,符合生物炼制的理念。前期关于预水解的研究多集中于半纤维素的降解、分离和利用,而有关预水解过程中木质素降解的系统研究鲜有报道。以杨木为原料,在130~210 ℃条件下保温30~120 min进行预水解,结合P因子研究得率、葡聚糖、木聚糖、酸不溶木质素和酸溶木质素的降解率,揭示P因子对木质素降解行为的调控作用,探讨各化学组分在预水解过程中的相互作用。研究表明,预水解过程中木质素发生了一定程度的碎片化。随温度升高和时间延长,酸不溶木质素降解率均逐渐升高; 当温度为190和210 ℃时,随时间延长,酸溶木质素降解率先升高后降低。试验证明,P因子对杨木木质素的降解具有调控作用。随着P因子增加,酸不溶木质素降解率呈指数上升,且分为快速降解(P因子<1 500)和缓慢降解(P因子>1 500)两个阶段; 酸溶木质素降解率先上升后下降,在P因子为1 926时达到最大值45.9%。此外,预水解过程中碳水化合物和木质素的降解具有相互作用关系。碳水化合物的降解为木质素的溶出打开了物理通道,同时木质素的重新吸附阻碍了其进一步降解。
Abstract:
Prehydrolysis for lignocelluloses biomass bioconversion has attracted the most attention among the conventional hydrolysis methods, due to its environment-friendly process performance. Previous studies mainly focused on the degradation of hemicellulose in lignocellulosic biomass, in which, xylitol and furfural were the main extraction products. However, the hydrolysis of acetyl groups in hemicellulose is of specific interest as acetic acid is produced and catalyzed secondary hydrolysis reactions, which concurrently promotes some lignin fractions dissolution during the prehydrolysis process. Various processes have been developed for highly puritied extraction products isolated from prehydrolysis liquor. However, due to the various and complex lignin produced by the secondary hydrolysis reactions, it is still difficult to achieve the high purity. Therefore, the studies of lignin degradation still require thorough investigation to provide more valuable information to highly puritied extraction products isolated from the prehydrolysis liquor. In this study, poplar was used in the prehydrolysis tests under different conditions. The changes of yields of glucan, xylan, acid-insoluble lignin and acid-soluble lignin were investigated during the temperature of 130-210 ℃ for 30-120 min. Then, the degradation behaviors of the chemical composition were also depicted with P factor to reveal the regulation effect. Based on the above results of the chemical composition degradation, it was further expected to assess the interaction effect of carbohydrate and lignin on the degradation. The results showed that the amount of lignin in lignocellulosic biomass was degraded during the prehydrolysis process due to the break of chemical bond between lignin units, which depended on the reaction temperature and holding time. For the acid-insoluble lignin, the degradation process can be divided into two phases, namely, a fast phase in the initial 30 min, and a slow one from 30 min to 120 min. For the acid-soluble lignin, at the temperature of 190 and 210 ℃, the degradation showed a fast increase in the initial 30 min and followed by a slow decrease from 30 min to 120 min. There was a regulation effect of P factor on the lignin degradation. For the acid-insoluble lignin, the degradation showed an exponential growth with the increase of P factor. For the acid-soluble lignin, the degradation reached the maximum of 45.9% at P factor of 1 926. Besides, the degradation of carbohydrate and lignin had an interaction effect. The degradation of carbohydrate improved the cell wall porosity and permeability in the initial 30 min, which would benefit the dissolution of lignin in the lignocellulosic biomass. However, the readsorption of lignin occurred in the fiber surface from 30 min to 120 min, which would prevent further degradation of lignin.

参考文献/References:

[1] BAUER F, COENEN L, HANSEN T, et al. Technological innovation systems for biorefineries: a review of the literature[J]. Biofuels, Bioproducts and Biorefining, 2017, 11(3): 534-548. DOI:10.1002/bbb.1767.
[2] 谌尧, 翟华敏. 生物精炼在造纸工业中的应用现状和前景[J]. 中华纸业, 2008, 29(2): 21-23.
CHEN Y, ZHAI H M. The present situation and prospect of the application of biorefinery in the pulp and paper industry[J]. China Pulp & Paper Industry, 2008, 29(2): 21-23.
[3] SIXTA H, IAKOVLEV M, TESTOVA L, et al. Novel concepts of dissolving pulp production[J]. Cellulose, 2013, 20(4): 1547-1561. DOI:10.1007/s10570-013-9943-1.
[4] SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554(7691): 224-228. DOI:10.1038/nature25476.
[5] 周妙方, 石海强, 李成祥, 等. 预水解强度对相思木硫酸盐法制浆黑液性质的影响[J]. 化工学报, 2019, 70(1): 234-241. DOI:10.11949/j.issn.0438-1157.20180710.
ZHOU M F, SHI H Q, LI C X, et al. Effect of prehydrolysis strength on properties of black liquor from kraft pulping of Acacia wood[J]. CIESC Journal, 2019, 70(1): 234-241.
[6] 江骁雅, 陈雪峰, 侯庆喜, 等. 自水解后杨木边材木片化学组分和结构特性的变化及其对木片碱液浸渍的影响[J]. 中国造纸学报, 2018, 33(1): 15-21. DOI:10.1198/j.issn.1000-6942.2018.01.15.
JIANG X Y, CHEN X F, HOU Q X, et al. Changes of chemical composition and structural characteristics of poplar sapwood chips after autohydrolysis and their effects on the subsequent alkali impregnation[J]. Transactions of China Pulp and Paper, 2018, 33(1): 15-21.
[7] RAUHALA T, KING A W T, ZUCKERSTÄTTER G, et al. Effect of autohydrolysis on the lignin structure and the kinetics of delignification of birch wood[J]. Nordic Pulp & Paper Research Journal, 2011, 26(4): 386-391. DOI:10.3183/npprj-2011-26-04-p386-391.
[8] ZHUANG J S, WANG X J, XU J Y, et al. Formation and deposition of pseudo-lignin on liquid-hot-water-treated wood during cooling process[J]. Wood Science and Technology, 2017, 51(1): 165-174. DOI:10.1007/s00226-016-0872-7.
[9] TESTOVA L, BORREGA M, TOLONEN L K, et al. Dissolving-grade birch pulps produced under various prehydrolysis intensities: quality, structure and applications[J]. Cellulose, 2014, 21(3): 2007-2021. DOI:10.1007/s10570-014-0182-x.
[10] TANG Y, ZHAO D Q, CRISTHIAN C, et al. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media[J]. Biotechnology for Biofuels, 2011, 4(1): 22. DOI:10.1186/1754-6834-4-22.
[11] MARTÍNEZ-ABAD A, GIUMMARELLA N, LAWOKO M, et al. Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods[J]. Green Chemistry, 2018, 20(11): 2534-2546. DOI:10.1039/c8gc00385h.
[12] 林玲, 曹石林, 马晓娟, 等. 竹材预水解过程木质素迁移行为研究[J]. 林产化学与工业, 2014, 34(5): 79-83. DOI:10.3969/j.issn.0253-2417.2014.05.013.
LIN L, CAO S L, MA X J, et al. Migration behavior of lignin during bamboo pre-hydrolysis[J]. Chemistry and Industry of Forest Products, 2014, 34(5): 79-83.
[13] TARASOV D, LEITCH M, FATEHI P. Flow through autohydrolysis of spruce wood chips and lignin carbohydrate complex formation[J]. Cellulose, 2018, 25(2): 1377-1393. DOI:10.1007/s10570-017-1643-9.
[14] 徐丰, 杨桂花, 吉兴香, 等. 热水预处理过程中P因子对杨木半纤维素溶出效果的影响[J]. 中国造纸, 2018, 37(8): 1-7. DOI:10.11980/j.issn.0254-508X.2018.08.001.
XU F, YANG G H, JI X X, et al. Effect of P factor on dissolution of poplar hemicellulose during the hydrothermal pretreatment process[J]. China Pulp & Paper, 2018, 37(8): 1-7.
[15] SLUITER A, HAMES B, RUIZ R, et al. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure: NREL/TP-510-42618[R]. Golden: National Renewable Energy Laboratory, 2008.
[16] 冯年捷, 汪继明, 谢益民, 等. 杨木预水解液中木质素质量浓度的P因子调控作用[J]. 林产化学与工业, 2018, 38(4): 35-40. DOI:10.3936/j.issn.0253-2417.2018.04.006.
FENG N J, WANG J M, XIE Y M, et al. Regulating effect of P-factor on lignin mass concentration inprehydrolysis liquor of triploid poplar[J]. Chemistry and Industry of Forest Products, 2018, 38(4): 35-40.
[17] YAO K, WU Q F, AN R, et al. Hydrothermal pretreatment for deconstruction of plant cell wall: Part I. Effect on lignin-carbohydrate complex[J]. AIChE Journal, 2018, 64(6): 1938-1953. DOI:10.1002/aic.16114.
[18] GIUMMARELLA N, LAWOKO M. Structural insights on recalcitrance during hydrothermal hemicellulose extraction from wood[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5156-5165. DOI:10.1021/acssuschemeng.7b00511.

相似文献/References:

[1]陆步云,罗真付,潘彪,等.汽蒸改性杨木胶合板的尺寸稳定性和力学强度[J].林业工程学报,2009,23(06):26.
 LU Buyun,LUO Zhenfu,PAN Biao,et al.Research on Dimensional Stability and Strength Properties of Poplar Plywood by Steam Treatment[J].Journal of Forestry Engineering,2009,23(02):26.
[2]赵明,黄河浪,苗爱梅,等.5种实木复合地板木材表面润湿性研究[J].林业工程学报,2009,23(06):29.
 ZHAO Ming,HUANG Helang,MIAO Aimei,et al.Study on the Wettability of Surface Veneer of Five Kinds of Engineered Solid Wood Flooring[J].Journal of Forestry Engineering,2009,23(02):29.
[3]梅长彤,周定国.玻璃纤维增强杨木混凝土模板用胶合板研究[J].林业工程学报,2009,23(06):79.
 MEI Changtong,ZHOU Dingguo.Study on Glass Fiber Reinforced Poplar Plywood Used for Concrete Form[J].Journal of Forestry Engineering,2009,23(02):79.
[4]项东升,王军,张馨月,等.杨木加工剩余物化学水解制备糠醛的研究[J].林业工程学报,2009,23(06):82.
 XIANG Dongsheng,WANG Jun,ZHANG Xinyue,et al.Study on the Preparation of Furfural from Processing Surplus of Poplarwood by Chemical Hydrolysis[J].Journal of Forestry Engineering,2009,23(02):82.
[5]周兆兵,崔举庆,张洋*,等.微波处理对杨木表面动态润湿性能的影响[J].林业工程学报,2010,24(01):53.
 HUANG Dan,XU Yuexiang,HU Haibo.Dynamic Changes of Endogenous Hormones in Osmanthus americanus Seed during Cold Stratification[J].Journal of Forestry Engineering,2010,24(02):53.
[6]蔡家斌,李涛.高温热处理对杨木压缩板材物理力学性能的影响[J].林业工程学报,2009,23(03):104.
 CAI Jia bin,LI Tao.Effects of High Temperature Heat Treatment on the PhysicalMechanical Properties of the Compressed Poplar Lumber[J].Journal of Forestry Engineering,2009,23(02):104.
[7]刘艳萍,张洋*,章昕,等.豆胶染色杨木胶合板的工艺及性能[J].林业工程学报,2009,23(04):95.
 LIU Yan ping,ZHANG Yang,ZHANG Xin,et al.Study of the Manufacturing Process and Properties of Dyed Poplar Plywood with Soybean Adhesive[J].Journal of Forestry Engineering,2009,23(02):95.
[8]夏炎,许俊,章瑞,等.杨木材性对酚醛树脂浸渍改性材的影响[J].林业工程学报,2010,24(02):52.
 XA Yan,XU Jun,ZHANG Zhui,et al.Effects of Wood Properties on Modified Poplar Wood by PF Resin[J].Journal of Forestry Engineering,2010,24(02):52.
[9]董丰,王军,潘成锋,等.杨木实木地板坯料两种干燥工艺比较[J].林业工程学报,2011,25(04):116.
 DONG Feng,WANG Jun,PAN Cheng feng,et al.A comparative research on two drying processes of poplar flooring blanks[J].Journal of Forestry Engineering,2011,25(02):116.
[10]夏炎,岳孔,张伟,等.PF树脂改性速生杨木浸注性分布规律研究[J].林业工程学报,2011,25(03):76.
 XIA Yan,YUE Kong,ZHANG Wei,et al.Study on distribution rule of fast-growing poplar wood modified with PF resin[J].Journal of Forestry Engineering,2011,25(02):76.

备注/Memo

备注/Memo:
收稿日期:2019-05-25 修回日期:2019-12-15
基金项目:湖北省自然科学基金(4115/00051); 湖北工业大学大学生创新创业训练计划(201810500040); 湖北工业大学博士生启动基金(BSQD2017016)。
作者简介:任利彤,男,研究方向为木质纤维生物质转化。通信作者:冯年捷,男,博士,讲师。E-mail:njfeng@hbut.edu.cn
更新日期/Last Update: 2020-03-10