[1]曹钰,王新洲,李延军*,等.高温油热处理对竹材淀粉含量及防霉性能的影响[J].林业工程学报,2020,5(02):109-115.[doi:10.13360/ j.issn.2096-1359.201905016]
 CAO Yu,WANG Xinzhou,LI Yanjun*,et al.Effect of high temperature oil heat treatment on the starch content and mold-resistant property of bamboo[J].Journal of Forestry Engineering,2020,5(02):109-115.[doi:10.13360/ j.issn.2096-1359.201905016]
点击复制

高温油热处理对竹材淀粉含量及防霉性能的影响()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
109-115
栏目:
林产化学加工
出版日期:
2020-03-11

文章信息/Info

Title:
Effect of high temperature oil heat treatment on the starch content and mold-resistant property of bamboo
文章编号:
2096-1359(2020)02-0109-07
作者:
曹钰1王新洲2李延军12*沈道海3戴月萍3张水珍4章卫钢1
1.浙江农林大学工程学院,杭州 311300; 2.南京林业大学材料科学与工程学院,南京 210037; 3.杭州大索科技有限公司,杭州 311251; 4.福建华宇集团竹业有限公司,福建 南平 353000
Author(s):
CAO Yu1 WANG Xinzhou2 LI Yanjun12* SHEN Daohai3 DAI Yueping3 ZHANG Shuizhen4 ZHANG Weigang1
1. School of Engineering, Zhejiang A & F University, Hangzhou 311300, China; 2. College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; 3. Hangzhou Dasuo Technology Co., Ltd., Hangzhou 311251, China; 4. Fujian Huayu Group Bamboo Industry Co., Ltd. Nanping 353000, Fujian, China
关键词:
毛竹 油热处理 淀粉含量 防霉性能 甲基硅油
Keywords:
moso bamboo oil heat treatment starch content mold resistance property methgl silicone
分类号:
S781.9
DOI:
10.13360/ j.issn.2096-1359.201905016
文献标志码:
A
摘要:
为了探索高温油热处理改性工艺对5年生新鲜毛竹材淀粉含量及防霉性能的影响,研究采用甲基硅油为加热介质,在不同热处理时间(2,4和6 h)和不同热处理温度(140,160,180和200 ℃)条件下对毛竹进行高温油热处理。利用分光光度计法测量竹材中的淀粉含量,采用扫描电子显微镜(SEM)观察热处理前后竹材微观结构变化,同时对比了不同油热处理工艺下竹材的防霉效果。试验结果表明:未处理竹材的淀粉含量为3.16%,经过油热处理的竹材淀粉含量均少于未处理竹材,且淀粉含量随着油热处理温度和时间的增加而逐渐降低。在200 ℃、6 h油热处理条件下,处理后竹材的淀粉含量为0.09%,相比于未处理竹材下降97.23%,高温油热处理能够有效降低竹材中淀粉含量; 通过SEM观察发现高温油热处理后竹材薄壁细胞组织发生变形破裂,竹材的渗透性提高,细胞腔中淀粉颗粒显著减少,且竹材纹孔及表面有油介质附着提高防霉性能; 在竹材防霉试验中,经过油热处理竹材的防霉能力与未处理材相比均有提高。当热处理温度大于160 ℃时,防霉效果显著,且竹材淀粉含量越低,对霉菌的防霉效果越好。
Abstract:
In order to explore the related effect of high temperature oil heat treatment modification process on the starch content and mold resistance property of 5 year old moso bamboo, in this study, methyl silicone oil was used as the heating medium, and high temperature oil heat treatment was carried out to treat the bamboo under different heat treatment times(2, 4 and 6 h)and different heat treatment temperatures(140, 160, 180 and 200 ℃). In this experiment, the starch content in the bamboo before and after the oil heat treatment was mainly measured by the spectrophotometer, and the change rule was fully analyzed. The scanning electron microscope(SEM)was used to observe the changes of the microstructure and starch content of the bamboo before and after the oil heat treatment. At the same time, through the bamboo mold prevention experiment to observe the anti-mildew effect of the bamboo under different oil heat treatment processes, and explore the mold mechanism by combining the changes of starch content. The experimental results showed that the starch content of the untreated bamboo was 3.16%, while the starch content of the bamboo after the oil heat treatment was smaller than that of the untreated bamboo. Moreover, the starch content of the treated bamboo gradually decreased with the increase of the oil heat treatment temperature and time. Among them, under the condition of the oil heat treatment at 200 ℃ for 6 h, the starch content of the treated bamboo was 0.09%, which was 97.23% lower than that of the untreated bamboo. These indicated that the high temperature oil heat treatment could effectively reduce the starch content in the bamboo. Through the SEM examination, it was found that the parenchyma cells of bamboo were deformed and broken after the heat treatment of high-temperature oil, thereby improving the permeability of the bamboo, so that the high-temperature oil medium entered the cell cavity, the starch particles were significantly reduced, and bamboo pits and surfaces were attached by oil medium to improve the mold resistance property. In the bamboo mold prevention experiment, the mold resistance property of the oil-treated bamboo was improved compared with the untreated bamboo. When the heat treatment temperature was higher than 160 ℃, the mold resistance was remarkable. The lower the starch content of bamboo, the better the resistance on mold was obtained.

参考文献/References:

[1] 张秀华, 鄂婧, 李玉顺, 等. 重组竹抗压和抗弯力学性能试验研究[J]. 工业建筑, 2016, 46(1):7-12. DOI:10.13204/j.gyjz201601002.
ZHANG X H, E Q, LI Y S, et al. Experimental research on compression and flexural mechanical performance of recombinant bamboo[J]. Industrial Construction, 2016, 46(1): 7-12.
[2] 李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016, 1(1):2-7. DOI:10.13360/j.issn.2096-1359.2016.01.001.
LI Y J, XU B, ZHANG Q S, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China[J]. Journal of Forestry Engineering, 2016, 1(1):2-7.
[3] 赵鹤, 张建, 李琴. 竹材防霉防腐研究现状及发展趋势[J]. 山西建筑, 2010, 36(29):137-139. DOI:10.3969/j.issn.1009-6825.2010.29.086.
ZHAO H, ZHANG J, LI Q, et al. Research status and development trend of bamboo anti-mould and anti-decay[J]. Shanxi Architecture, 2010, 36(29): 137-139.
[4] OKAHISA Y, YOSHIMURA T, IMAMURA Y.An application of the alkaline extraction-glucoamylase hydrolysis method to analyze starch and sugar contents of bamboo[J].Journal of Wood Science, 2005, 51(5): 542-545. DOI:10.1007/s10086-004-0674-7.
[5] 马星霞,蒋明亮,吕文华,等. 竹材主要变色菌霉菌的生长特性研究[J]. 林业科学研究,2009,22(6):819-823. DOI:10.13275/j.cnki.lykxyj.2009.06.017.
MA X X, JIANG M L, LU W H, et al. Study on the biological characteristics of stain fungiand mould fungion bamboo wood[J]. Forest Research,2009, 22( 6):819- 823.
[6] 孙芳利, 段新芳, 文桂峰, 等. CMC系列防腐剂对毛竹材的防霉效果[J]. 林业科学, 2006, 42(3):40-43. DOI:10.3321/j.issn:1001-7488.2006.03.008.
SUN F L, DUAN X F, WEN G F, et al. Anti-mold effects of CMC wood preservatives on bamboo wood[J]. Scientia Silvae Sinicae, 2006, 42(3): 40-43.
[7] 雍宬, 周明明, 关明杰. 超声空化对竹材微观结构及淀粉颗粒的影响[J]. 林业科技开发,2013,27(3):99-102. DOI:10.3969/j.issn.1000-8101.2013.03.026.
YONG C, ZHOU M M, GUAN M J. Effect of ultrasonic cavitation on microscopic structure and starch granule of bamboo[J]. China Forestry Science and Technology, 2013, 27(3): 99-102.
[8] 周明明, 雍宬, 莫翠招, 等. 不同浸渍处理方式对毛竹淀粉含量的影响[J]. 林业科技开发,2012,26(5):105-107. DOI: 10.3969/j.issn.1000-8101.2012.05.027.
ZHOU M M, YONG C, MO C Z, et al. Influence of impregnation treatments on starch content in moso bamboo[J]. China Forestry Science and Technology, 2012, 26(5): 105-107.
[9] 陈泽君, 王勇, 邓腊云, 等. 木材热处理工艺研究进展[J]. 湖南林业科技,2012,39(2):62-65. DOI: 10.3969/j.issn.1003-5710.2012.02.016.
CHEN Z J, WANG Y, DENG L Y, et al. Research progress on wood heat-treatment technologies[J]. Hunan Forestry Science and Technology, 2012, 39(2): 62-65.
[10] 丁涛, 蔡家斌, 耿君. 欧洲木材热处理技术的研究及应用[J]. 木材工业, 2015, 29(5):29-33. DOI: 10.3969/j.issn.1001-8654.2015.05.007.
DING T, CAI J B, GENG J. Research and application of wood thermal modification technologies in Europe[J]. China Wood Industry, 2015, 29(5): 29-33.
[11] 李冠君, 李彤彤, 李民, 等. 热处理温度对橡胶木材淀粉含量的影响[J]. 热带作物学报,2019,40(1):180-183. DOI: 10.3969/j.issn.1000-2561.2019.01.026.
LI G J, LI T T, LI M, et al. Effect of heat treatment temperature on starch content of rubber wood[J]. Chinese Journal of Tropical Crops, 2019, 40(1): 180-183.
[12] 黄晓东, 黄俊昆, 许忠允, 等. 淀粉酶处理对竹材防霉性能的影响[J]. 林业工程学报, 2019, 4(3):60-65. DOI: 10.13360/j.issn.2096-1359.2019.03.009.
HUANG X D, HUANG J K, XU Z Y, et al. Study on the mold-resistant properties of moso bamboo treated with starch amylase[J]. Journal of Forestry Engineering, 2019, 4(3):60-65.
[13] LIU X X, YU L, LIU H S, et al. Thermal decomposition of corn starch with different amylose/amylopectin ratios in open and sealed systems[J]. Cereal Chemistry, 2009, 86(4):383-385. DOI:10.1094/cchem-86-4-0383.
[14] 邵迎涛, 王新洲, 李延军, 等. 高温饱和蒸汽软化工艺对竹展平板物理力学性能的影响[J]. 竹子学报, 2018, 37(2):23-27. DOI: 10.3969/j.issn.1000-6567.2018.02.004.
SHAO Y T, WANG X Z, LI Y J, et al. Effect of high temperature saturated steam softening treatment on physical and mechanical properties of flattened bamboo[J]. Journal of Bamboo Research, 2018, 37(2):23-27.
[15] 叶为标. 淀粉糊化及其检测方法[J]. 粮食与油脂, 2009(1):7-10. DOI: 10.3969/j.issn. 1008-9578.2009.01.003.
YE W B. The starch gelatinization and its detection methods[J]. Cereals & Oils, 2009(1):7-10.

相似文献/References:

[1]莫弦丰,关明杰,朱一辛*,等.毛竹的冲击韧性及冲击试样断口形貌[J].林业工程学报,2010,24(01):88.
 JIANG Rongcui,PENG Fangren,TAN Pengpeng.Study on Somatic Embryogenesis in Catalpa bungei[J].Journal of Forestry Engineering,2010,24(02):88.
[2]陈双林,杨清平,郭子武,等.海拔对毛竹林土壤物理性质和水分特性的影响[J].林业工程学报,2010,24(01):72.
 XIE Baodong,FANG Shengzuo.Effects of Different Mulching Weights on Soil Bulk Density and Its Stability in Poplar Plantation at the Mountain Area[J].Journal of Forestry Engineering,2010,24(02):72.
[3]关明杰,高婕,朱一辛.丛生竹地板与毛竹地板吸声性能比较[J].林业工程学报,2009,23(01):29.
 GUAN Ming jie,GAO Jie,ZHU Yi xin.Comparison of Sound Absorption Properties between Sympodial Bamboo Flooring and Moso Bamboo Flooring[J].Journal of Forestry Engineering,2009,23(02):29.
[4]杨金满.喷灌对毛竹冬笋生长的影响[J].林业工程学报,2010,24(06):121.
[5]周海平,李晓铁,唐国荣,等.毛竹径级快速增粗增长试验[J].林业工程学报,2010,24(05):109.
[6]黄晓东,谢敏芳,刘雁.风电叶片用毛竹和麻竹竹青片层积材性能评价[J].林业工程学报,2010,24(04):14.
 CAO Lin,HAN Wei dong,LI Feng feng,et al.Performance evaluation on laminated bamboo outer plylumber made of two bamboo species Phyllostachys pubescens and Dendrocalamus latiflorus used for wind turbine blade manufacturing∥HUANG Xiaodong, XIE Minfang, LIU Yan[J].Journal of Forestry Engineering,2010,24(02):14.
[7]余林,肖复明*,徐海宁,等.江西安福不同类型毛竹林土壤入渗与贮水特征[J].林业工程学报,2013,27(02):37.
 YU Lin,XIAO Fu ming,XU Hai ning,et al.Soil water holding capacities and infiltration characteristics in different types of Phyllostachys edulis plantations at Anfu, Jiangxi Province[J].Journal of Forestry Engineering,2013,27(02):37.
[8]洪宜聪.黄脊竹蝗无公害防治技术[J].林业工程学报,2013,27(04):114.
 HONG Yi cong.A harmless prevention and control technique of Ceracris kiangsu (Tsai)[J].Journal of Forestry Engineering,2013,27(02):114.
[9]青阳县毛竹低产林改造技术初探.青阳县毛竹低产林改造技术初探[J].林业工程学报,2013,27(05):123.
 JIANG Jian jun.A preliminary study on the improvement technique of Phyllostachys pubescens forests in Qingyang county[J].Journal of Forestry Engineering,2013,27(02):123.
[10]李翠环.施用EM菌对毛竹林土壤微生物生物量碳和脲酶活性的影响[J].林业工程学报,2013,27(06):56.
 LI Cui huan.The influences of EM microbial organic fertilizer on soil microbial biomass carbon and urease activity in Phyllostachys heterocycla plantation[J].Journal of Forestry Engineering,2013,27(02):56.

备注/Memo

备注/Memo:
收稿日期:2019-05-10 修回日期:2019-09-21
基金项目:“十三五”国家重点研发计划(2017YFD0600801); 江苏省科技计划项目(BE2018391); 江苏省农业科技自主创新资金项目(CX(18)3033); 浙江省竹资源与高效利用协同创新中心开放项目(2017ZZY2-06)。
作者简介:曹钰,女,研究方向为竹材工程材料。通信作者:李延军,男,教授。 E-mail:lalyj@126.com
更新日期/Last Update: 2020-03-10