[1]成亮,王立杰*,张国庆.一种自适应多功能水果采摘装置[J].林业工程学报,2020,5(02):130-136.[doi:10.13360/ j.issn.2096-1359.201904036]
 CHENG Liang,WANG Lijie*,ZHANG Guoqing.Self-adaptive and multi-functional fruit picking device[J].Journal of Forestry Engineering,2020,5(02):130-136.[doi:10.13360/ j.issn.2096-1359.201904036]





Self-adaptive and multi-functional fruit picking device
南京林业大学机械电子工程学院,南京 210037
CHENG Liang WANG Lijie* ZHANG Guoqing
College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
水果采摘 自适应 通用性 接触力 欠驱动
fruit picking self-adaptive universality contact force underactuation
S776; TP241
10.13360/ j.issn.2096-1359.201904036
为实现水果采摘的自适应性及通用性,基于欠驱动原理设计了一种能够根据水果的形状自动调整手指之间的相对位置,并能实现无损采摘的自适应多功能水果采摘装置。该水果采摘装置有3个手指,依靠3个驱动元件实现对整个装置的11个自由度的控制。通过电机驱动蜗轮蜗杆机构及直齿轮机构实现了手指间角度的调整,可完成对各类不同形状水果的采摘。利用气压传动实现了手指的张开与闭合,采用伺服电机带动气缸旋转从而带动手爪旋转,实现水果与果梗分离,同时,对水果采摘装置的结构、尺寸进行了设计。通过对各种不同形状水果的仿真验证得出,手指间呈120°分布时可实现对横径80~100 mm的类球形水果(如苹果等水果)的自适应包络抓取,同时,手指与水果间接触力可以控制在3~15 N; 手指间呈平行分布时可实现对横径65~85 mm的类圆柱形水果(如香瓜等水果)的自适应包络抓取,同时,手指与水果间接触力可以控制在3~15 N。2种情况下都既能稳定抓取水果,又能保护水果不受损伤。本研究设计的装置结构较简单,动作易于自锁,可自适应水果形状及大小,采摘可靠方便。
The main problems of fruit picking devices are as follows: 1)Poor adaptive grasping. Fruit picking device is difficult to adapt to the shape of fruit, resulting in crushing fruits easily. 2)Poor smooth-picking. At present, the end effector of fruit picking device mostly adopts rigid structure, and there is no buffering stage when holding fruit, while the fruit is delicate and easy to hurt. 3)Due to the lack of universality of picking, there are great differences in the shapes of different kinds of fruits, and the sizes of end-effector required by fruits with different sizes are also different. Currently, most fruit picking devices can only pick a specific kind of fruit, but not have universality of picking. In order to realize the self-adaptability and universality of fruit picking, a self-adaptive and multi-functional fruit picking device, which can adjust the relative position automatically between fingers according to the shape of fruit and realize the lossless picking based on the underactuation principle was designed. The fruit-picking device had three fingers and relies on three driving elements to control the whole device with 11 degrees of freedom. Through the motor drive worm gear mechanism and straight gear mechanism to achieve the adjustment of the angle between the fingers, the device could be completed to pick different shapes of fruits. Pneumatic transmission was used to realize the opening and closing of fingers, and servo motor was used to drive the cylinder for rotating the claw, so as to realize the separation of fruit and fruit-stalk. Meanwhile, the structure and size of the fruit picking device were designed. Through simulation to various fruit shape, fingers in 120° distribution could be realized the adaptive enveloping of spherical fruits such as apples with transverse diameter from 80 mm to 100 mm, and the contact force between fingers and fruit could be controlled from 3 N to 15 N at the same time. Fingers in parallel distribution could be realized the adaptive enveloping of cylindrical fruits such as muskmelon with transverse diameter from 65 mm to 85 mm, and the contact force between fingers and fruit could be controlled from 3 N to 15 N at the same time. In both cases, the fruit-picking device will stabilize the fruit and protect it from damage. The device had the advantages of simple structure, easy self-locking action, self-adaptive fruit shape and size, reliable and convenient picking.


[1] 宋健, 孙学岩, 张铁中, 等. 茄子采摘机器人机械传动系统设计与开发[J]. 机械传动, 2009, 33(5): 36-38. DOI: 10.3969/j.issn.1004-2539.2009.05.012.
SONG J, SUN X Y, ZHANG T Z, et al. Design and development of transmission of picking robot for eggplant[J]. Journal of Mechanical Transmission, 2009, 33(5): 36-38.
[2] 李涛, 骆敏舟, 张志华, 等. 基于欠驱动机构的仿人机器人手爪设计[J]. 机电一体化, 2010, 16(1): 29-33. DOI: 10.3969/j.issn.1007-080X.2010.01.005.
LI T, LUO M Z, ZHANG Z H, et al. Design of a humanoid robot hand based on underactuated mechanism[J]. Mechatronics, 2010, 16(1): 29-33.
[3] 马履中, 杨文亮, 王成军, 等. 苹果采摘机器人末端执行器的结构设计与试验[J]. 农机化研究, 2009, 31(12): 65-67. DOI: 10.13427/j.cnki.njyi.2009.12.061.
MA L Z, YANG W L, WANG C J, et al. Structure design and experiment of the end-effector for apple-harvesting robot[J]. Journal of Agricultural Mechanization Research, 2009, 31(12): 65-67.
[4] 崔鹏, 陈志, 张小超. 苹果采摘机器人仿生机械手静力学分析与仿真[J]. 农业机械学报, 2011, 42(2): 149-153. DOI: 10.3969/j.issn.1000-1298.2011.02.031.
CUI P, CHEN Z, ZHANG X C. Statics analysis of apple-picking robot humanoid manipulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 149-153.
[5] 赵云伟, 耿德旭, 刘晓敏, 等. 气动柔性五指机械手的运动学及抓持能力[J]. 机器人, 2014, 36(2): 171-178. DOI: 10.3724/SP.J.1218.2014.00171.
ZHAO Y W, GENG D X, LIU X M, et al. Kinematics and its grasp ability of pneumatic flexible five-fingered robot hand[J]. Robot, 2014, 36(2): 171-178.
[6] SU Y Y, ZHANG X, DONG W, et al. Parameter design of an underactuated robotic hand considering permissible initial object pose error[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems(CYBER), June 8-12, 2015. Shenyang, China. New York, USA: IEEE, 2015. DOI: 10.1109/cyber.2015.7288069.
[7] YAMAGUCHIK, HIRATAY, KOSUGE K. Underactuated robot hand for dual-arm manipulation[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), September 28-October 2, 2015. Hamburg, Germany. New York, USA: IEEE, 2015. DOI:10.1109/iros.2015.7353782.
[8] 李欢. 果蔬采摘机器人末端执行器的设计与研究[D]. 沈阳: 沈阳工业大学, 2015.
LI H. Design and research of the fruit and vegetable picking robot end actuator[D]. Shenyang: Shenyang University of Technology, 2015.
[9] 潘孝业, 胡挺, 刘凤臣, 等. 基于PVDF的欠驱动多指手滑触觉硬件系统[J]. 机电工程, 2012, 29(3): 318-321. DOI: 10.3969/j.issn.1001-4551.2012.03.019.
PAN X Y, HU T, LIU F C, et al.Underactuated multi-fingered hand with tactile sensor hardware system based on PVDF[J]. Mechanical & Electrical Engineering Magazine, 2012, 29(3): 318-321.
[10] 彭磊, 姬长英, 王海青. 基于Pro/E和ADAMS的欠驱动苹果采摘机械手运动学仿真分析[J]. 机械与电子, 2010, 28(6): 62-64. DOI: 10.3969/j.issn.1001-2257.2010.06.017.
PENG L,JI C Y, WANG H Q. Study on kinematics simulation of underactuated manipulator for picking apple based on Pro/E and ADAMS[J]. Machinery & Electronics, 2010, 28(6): 62-64.
[11] 杨庆华, 金寅德, 钱少明, 等. 基于气动柔性驱动器的苹果采摘末端执行器研究[J]. 农业机械学报, 2010, 41(9): 154-158. DOI: 10.3969/j.issn.1000-1298.2010.09.031.
YANG Q H, JIN Y D, QIAN S M, et al. Research on end-effector of apple picking based on new flexible pneumatic actuator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9): 154-158.
[12] BIRGLEN L, GOSSELIN C M. Geometric design of three-phalanx underactuated fingers[J]. Journal of Mechanical Design, 2006, 128(2): 356-364. DOI: 10.1115/1.2159029.
[13] BIRGLEN L, GOSSELIN C M. Kinetostatic analysis of underactuated fingers[J]. IEEE Transactions on Robotics and Automation, 2004, 20(2): 211-221. DOI: 10.1109/tra.2004.824641.
[14] YAMAGUCHIK, HIRATAY, KOSUGE K. Development of robot hand with suction mechanism for robust and dexterous grasping[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, November 3-7, 2013. Tokyo. New York, USA: IEEE, 2013. DOI: 10.1109/iros.2013.6697153.
[15] 陈燕, 蒋志林, 李嘉威, 等. 夹剪一体的荔枝采摘末端执行器设计与性能试验[J]. 农业机械学报, 2018, 49(1): 35-41. DOI: 10.6041/j.issn.1000-1298.2018.01.004.
CHEN Y, JIANG Z L, LI J W, et al. Design and testing of Litchi picking end-effector integrated clamping and cutting performance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 35-41.
[16] 左健民.液压与气压传动[M].北京: 机械工业出版社,2016.
ZUO J M. Hydraulic and pneumatic transmission[M]. Beijing: China Machine Press, 2016.
[17] 金波, 林龙贤. 果蔬采摘欠驱动机械手爪设计及其力控制[J]. 机械工程学报, 2014, 50(19): 1-8. DOI: 10.3901/JME.2014.19.001.
JIN B, LIN L X. Design and force control of an underactuated robotich and for fruit and vegetable picking[J]. Journal of Mechanical Engineering, 2014, 50(19): 1-8.


收稿日期:2019-04-20 修回日期:2019-07-18
更新日期/Last Update: 2020-03-10