[1]谭星,于新文*,张旭,等.桉树人工林中433 MHz信道LoRa信号的传播特性[J].林业工程学报,2020,5(02):137-143.[doi:10.13360/ j.issn.2096-1359.201905012]
 TAN Xing,YU Xinwen*,ZHANG Xu,et al.Propagation characteristics of LoRa signal at 433 MHz channel in eucalyptus plantation environment[J].Journal of Forestry Engineering,2020,5(02):137-143.[doi:10.13360/ j.issn.2096-1359.201905012]
点击复制

桉树人工林中433 MHz信道LoRa信号的传播特性()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
137-143
栏目:
装备与信息化
出版日期:
2020-03-11

文章信息/Info

Title:
Propagation characteristics of LoRa signal at 433 MHz channel in eucalyptus plantation environment
文章编号:
2096-1359(2020)02-0137-07
作者:
谭星1于新文1*张旭1李凡1刘燕1欧阳萱1文永志2
1. 中国林业科学研究院资源信息研究所,北京 100091; 2. 陕西省汉中市留坝县林业局,陕西 汉中 724100
Author(s):
TAN Xing1 YU Xinwen1* ZHANG Xu1 LI Fan1 LIU Yan1 OUYANG Xuan1 WEN Yongzhi2
1. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; 2. Liuba Forestry Bureau, Hanzhong 724100, Shaanxi, China
关键词:
无线传感器网络 桉树人工林 LoRa 信号传播 森林监测
Keywords:
WSN eucalyptus plantation LoRa signal propagation forest monitoring
分类号:
S778
DOI:
10.13360/ j.issn.2096-1359.201905012
文献标志码:
A
摘要:
LoRa技术是最新出现的一种无线通信技术,具有低功耗、距离远、工作在非授权波段等特点,与ZigBee等现在常用的无线通信技术相比,其在人工林无线传感器网中更具潜力。然而由于LoRa的传输受环境影响较大,目前在人工林中传播特性的研究还处于空白。本研究基于Shadowing信号衰减模型,在广西东门林场中测试了433 MHz信道LoRa信号在两种天线高度下(1.5,2.0 m)和3种不同环境下(开阔环境、3 a林龄桉树人工林,5 a林龄桉树人工林)LoRa信号接收强度(RSSI)随距离变化的情况,每种条件下得到了两组数据。首先利用其中一组数据对模型进行拟合,拟合结果表明,LoRa信号传输遵从Shadowing模型,拟合度在0.886~0.982。然后利用另一组数据对模型的精度进行验证,验证结果表明,模型精度较高,模型的精度介于0.780~0.961。最后分析了桉树人工林中影响LoRa信号传输的主要因素。本研究的方法和获得的信号衰减系数可以为桉树人工林无线传感器网络监测中LoRa节点的组网和部署提供依据和参考。
Abstract:
The growth and environmental information of the planted forest can be automatically obtained by wireless sensor network(WSN)in near real-time, providing important data support for the management of the planted forest. Due to issues such as the power consumption, limited communication coverage, etc., it is very difficult to meet all the requirements of planted forest monitoring by using conventional wireless communication technologies. The LoRa(long range)technology is the latest wireless communication technology. Comparing with ZigBee, it has more potential applications for plantation wireless sensor networks construction because of the features of long-distance coverage, low power consumption, and workable in unlicensed band. However, the propagation of LoRa signal is greatly affected by the environment, and the research on its propagation characteristics in plantations is still blank. Based on the previous research, this study tested the variation of the received signal strength(RSSI)of the LoRa signal at 433 MHz channel with distance at two antenna heights(1.5 and 2.0 m)and three different environments(open environment, 3-year-old eucalyptus plantation environment, 5-year-old eucalyptus plantation environment)in the Dongmen, Guangxi Province. Two sets of data were obtained under each condition. Firstly, one set of the data was used to fit the Shadowing signal attenuation model. The fitting results showed that the LoRa signal transmission conformed to the Shadowing model, the regression coefficient R2 ranged from 0.886 to 0.982, and the path loss index in the model which reflects the influence of environment were: 2.894(open environment with 1.5 m antenna height), 2.491(open environment with 2.0 m antenna height), 3.733(3-year-old eucalyptus plantation with 1.5 m antenna height), 3.586(3-year-old eucalyptus plantation with 2.0 m antenna height), 4.146(5-year-old eucalyptus plantation with 1.5 m antenna height)and 3.805(5-year-old eucalyptus plantation with 2.0 m antenna height). Then another set was used to verify the accuracy of the model. The results showed that the model had high precision. The R2 ranged from 0.780 to 0.961 and the MSE(root mean square error)values of the models ranged from 3.522 to 6.872. Finally, the main factors affecting the LoRa signal transmission in eucalyptus plantations were analyzed. The path loss index in the eucalyptus model was larger, the signal attenuation speed was faster, and the transmission distance was shorter compared with the model in open environment. The LoRa signal propagation in the eucalyptus plantation environment with the height of antenna between 1.5 m to 2.0 m was less affected by the antenna height, but more affected by the thickness of the trunk. The larger the diameter of the trunk, the larger the path loss index, the faster the signal attenuation and the shorter the transmission distance. The research method and the signal attenuation coefficient calculated in this study can provide basis and reference for the construction of LoRa wireless sensor networks in the eucalyptus plantation.

参考文献/References:

[1] 刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1): 1-10. DOI:10.5846/stxb201712072201.
LIU S R, YANG Y J, WANG H. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 2018, 38(1): 1-10.
[2] 陆元昌, 刘宪钊, 雷相东, 等. 人工林多功能经营技术体系[J]. 中南林业科技大学学报, 2017, 37(7): 1-10. DOI:10.14067/j.cnki.1673-923x.2017.07.001.
LU Y C, LIU X Z, LEI X D, et al. Technical system for plantation multi-function management[J]. Journal of Central South University of Forestry & Technology, 2017, 37(7): 1-10.
[3] JIANG X C, ZHOU G P, LIU Y F, et al. Wireless sensor networks for forest environmental monitoring[C]∥The 2nd International Conference on Information Science and Engineering, December 4-6, 2010. Hangzhou, China. New York, USA: IEEE, 2010. DOI:10.1109/icise.2010.5691483.
[4] LAZARESCU M T. Design of a WSN platform for long-term environmental monitoring for IoT applications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013, 3(1): 45-54. DOI:10.1109/jetcas.2013.2243032.
[5] TAO H Q, ZHANG H. Forest monitoring application systems based on wireless sensor networks[C]∥The third International Symposium on Intelligent Information Technology Application Workshops, November 21-22, 2009. Nanchang, China. New York, USA: IEEE, 2009. DOI:10.1109/iitaw.2009.66.
[6] LEWIS F L. Wireless sensor networks[M]∥Smart Environments.Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005: 11-46. DOI:10.1002/047168659x.ch2.
[7] YICK J, MUKHERJEE B, GHOSAL D. Wireless sensor network survey[J]. Computer Networks, 2008, 52(12): 2292-2330. DOI:10.1016/j.comnet.2008.04.002.
[8] ZHANG Y, LIU X G, GENG X, et al. IoT forest environmental factors collection platform based on Zigbee[J]. Cybernetics and Information Technologies, 2014, 14(5): 51-62. DOI:10.2478/cait-2014-0043.
[9] 狄飞, 张莉君. 基于ZigBee无线传感器网络的森林环境监测系统[J]. 福建农林大学学报(自然科学版), 2011, 40(4): 435-438. DOI:10.13323/j.cnki.j.fafu(nat.sci.).2011.04.007.
DI F, ZHANG L J. Design of forest environment monitoring system based on Zigbee wireless sensor network[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2011, 40(4): 435-438.
[10] 颜建辉, 陈崇成, 魏一丁, 等. 基于ZigBee无线传感器网络的林区局地环境监测系统[J]. 中国农业科技导报, 2017, 19(6): 72-82. DOI:10.13304/j.nykjdb.2016.575.
YAN J H, CHEN C C, WEI Y D, et al. A local environmental monitoring system of forest region based on ZigBee wireless sensor network[J]. Journal of Agricultural Science and Technology, 2017, 19(6): 72-82.
[11] 张军国, 李文彬, 韩宁, 等. 基于ZigBee无线传感器网络的森林火灾监测系统的研究[J]. 北京林业大学学报, 2007, 29(4): 41-45. DOI:10.13332/j.1000-1522.2007.04.010.
ZHANG J G, LI W B, HAN N, et al. Forest fire detection system based on ZigBee wireless sensor network[J]. Journal of Beijing Forestry University, 2007, 29(4): 41-45.
[12] CIVELEK C. Low power wide area network(LPWAN)and internet of things adaptation in agricultural machinery[J]. Scholars Journal of Agriculture and Veterinary Sciences, 2017, 4(1): 18-23. DOI:10.21276/sjavs.2017.4.1.4.
[13] ISMAIL D, RAHMAN M, SAIFULLAH A. Low-power wide-area networks[C]∥Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking-Workshops ICDCN'18, January 4-7, 2018. Varanasi, India. New York, USA: ACM Press, 2018. DOI:10.1145/3170521.3170529.
[14] LIEDMANN F, WIETFELD C. SoMoS: a multidimensional radio field based soil moisture sensing system[C]∥2017 IEEE SENSORS, October 29-November 1, 2017. Glasgow, Scotland. New York, USA: IEEE, 2017. DOI:10.1109/icsens.2017.8233889.
[15] PARK S, YUN S, KIM H, et al. Forestry monitoring system using LoRa and drone[C]∥Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics-WIMS'18, June 25-27, 2018. Novi Sad, Serbia. New York, USA: ACM Press, 2018. DOI:10.1145/3227609.3227677.
[16] REDA H T, DAELY P T, KHAREL J, et al. On the application of IoT: meteorological information display system based on LoRa wireless communication[J]. IETE Technical Review, 2018, 35(3): 256-265. DOI:10.1080/02564602.2017.1279988.
[17] 张铮, 曹守启, 朱建平, 等. 面向大面积渔业环境监测的长距离低功耗LoRa传感器网络[J]. 农业工程学报, 2019, 35(1): 164-171. DOI:10.11975/j.issn.1002-6819.2019.01.020.
ZHANG Z, CAO S Q, ZHU J P, et al. Long range low power sensor networks with LoRa sensor for large area fishery environment monitoring[J]. Transactions of the CSAE, 2019, 35(1): 164-171.
[18] YIM D, CHUNG J, CHO Y, et al. An experimental LoRa performance evaluation in tree farm[C]∥2018 IEEE Sensors Applications Symposium(SAS), March 12-14, 2018. Seoul, Korea(South). New York, USA: IEEE, 2018. DOI:10.1109/sas.2018.8336764.
[19] CATTANI M, BOANO C, RÖMER K. An experimental evaluation of the reliability of LoRa long-range low-power wireless communication[J]. Journal of Sensor and Actuator Networks, 2017, 6(2): 7. DOI:10.3390/jsan6020007.
[20] IOVA O, MURPHY A, PICCO G P, et al. LoRa from the city to the mountains:Exploration of hardware and environmental factors[C]∥Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks, 2017.
[21] EREMIN V, BORISOV A. A research of the propagation of LoRa signals at 433 and 868 MHz in difficult urban conditions[C]∥IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, 363: 012014. DOI:10.1088/1757-899x/363/1/012014.
[22] TRINH L H, BUI V X, FERRERO F, et al. Signal propagation of LoRa technology using for smart building applications[C]∥2017 IEEE Conference on Antenna Measurements & Applications(CAMA), December 4-6, 2017. Tsukuba, Japan. New York, USA: IEEE, 2017. DOI:10.1109/cama.2017.8273458.
[23] SEYE M R, GUEYE B, DIALLO M. An evaluation of LoRa coverage in Dakar peninsula[C]∥2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference(IEMCON), October 3-5, 2017. Vancouver, Canada. New York, USA: IEEE, 2017. DOI:10.1109/iemcon.2017.8117211.
[24] AHMAD K A, SALLEH M S, SEGARAN J D, et al. Impact of foliage on LoRa 433MHz propagation in tropical environment[C]∥Putrajaya, Malaysia.Author(s), 2018. DOI:10.1063/1.5022903.
[25] 叶绍明, 郑小贤, 金大刚. 广西桉树人工林经营现状分析及对策探讨[J].林业资源管理, 2006(6): 23-26. DOI:10.13466/j.cnki.lyzygl.2006.06.006.
YE S M, ZHENG X X, JIN D G. Study on current situation and management strategy of Eucalyptus plantation in Guangxi[J]. Forest Resources Management, 2006(6): 23-26.
[26] TRASVIÑA-MORENO C A, BLASCO R, CASAS R, et al. A network performance analysis of LoRa modulation for LPWAN sensor devices[M]∥Ubiquitous Computing and Ambient Intelligence. Cham: Springer International Publishing, 2016: 174-181. DOI:10.1007/978-3-319-48799-1_21.
[27] XU J Q, LIU W, LANG F G, et al. Distance measurement model based on RSSI in WSN[J]. Wireless Sensor Network, 2010, 2(8): 606-611. DOI:10.4236/wsn.2010.28072.
[28] 徐兴元, 章玥, 季民河, 等. 农业生态环境监测中无线传感节点信号有效传输距离的确定[J]. 农业工程学报, 2013, 29(14): 164-170. DOI:10.3969/j.issn.1002-6819.2013.14.021.
XU X Y, ZHANG Y, JI M H, et al. Determination of effective transmission distances of wireless sensor network nodes for agro-ecological environment monitoring[J]. Transactions of the CSAE, 2013, 29(14): 164-170.
[29] AHMAD K A, SEGARAN J D, HASHIM F R, et al. LoRa propagation at 433 MHz in tropical climate environment[J]. Journal of Fundamental and Applied Sciences, 2018, 9(3S): 384. DOI:10.4314/jfas.v9i3s.31.

相似文献/References:

[1]金纯,罗凤.基于ZigBee的传感器网络在森林防火系统应用[J].林业工程学报,2006,20(06):77.

备注/Memo

备注/Memo:
收稿日期:2019-05-08 修回日期:2019-07-18
基金项目:国家重点研发计划(2017YFD0600901)。
作者简介:谭星,男,研究方向为林业信息工程。通信作者:于新文,男,副研究员。E-mail: yuxinwen@ifrit.ac.cn
更新日期/Last Update: 2020-03-10