[1]何诚,舒立福,刘超,等.南方人工林地阴燃火温度变化特征研究[J].林业工程学报,2020,5(02):151-157.[doi:10.13360/ j.issn.2096-1359.201907001]
 HE Cheng,SHU Lifu,LIU Chao,et al.Research on variation of temperature of underground fire in south China plantation[J].Journal of Forestry Engineering,2020,5(02):151-157.[doi:10.13360/ j.issn.2096-1359.201907001]





Research on variation of temperature of underground fire in south China plantation
1.南京森林警察学院,南京 210023; 2.中国林业科学研究院森林生态环境与保护研究所,北京 100091; 3.内蒙古赤峰市喀喇沁旗旺业甸实验林场,内蒙古 赤峰 024423
HE Cheng12 SHU Lifu2 LIU Chao3 WANG Yue1 ZHANG Yuanhao1 ZHANG Yunsheng1
1. Nanjing Forest Police College, Nanjing 210023, China; 2. The Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; 3. Khorqinqi Wangye Experimental Forest Farm in Chifeng City, Inner Mongolia, Chifeng 024423, Inner Mongolia, China
阴燃 温度变化 热红外 人工林地 森林防火
smoldering temperature change thermal infrared woodland forest fire prevention
10.13360/ j.issn.2096-1359.201907001
阴燃火具有隐蔽性强、持续时间长、目测难度大等特点,它不但能烧毁树根和地下微生物从而导致树木死亡,而且在一定条件下会复燃,进而引发更大森林火灾,对森林生态系统的破坏性极大,当前对其温度变化特征尚缺乏深入了解,其科学问题亟待解决。笔者以南京市栖霞区丁山的地表可燃物为研究对象,针对不同燃烧条件(可燃物类型、风速、可燃物含水量),开展野外调查实验、燃烧床火烧实验、模型模拟等,通过室内外实验和数据统计,分析地表可燃物的阴燃温度变化特征和转换为明火的临界温度及其温度变化过程。结果表明:枯立木燃烧的温度最高,阴燃最高值可以达到690 ℃,腐殖质阴燃产生的温度和持续性远高于其他可燃物类型,因此复燃的概率高于枯立木、枯枝落叶、鲜活植物等可燃物阴燃后复燃概率; 森林可燃物阴燃温度上升速度随风速的增大而逐变快; 地表可燃物阴燃下温度上升速度与可燃物含水量成反比,即含水量越大,森林可燃物阴燃温度上升速度越慢,当含水量超过42.3%,可燃物能够复燃的概率极低。
Smoldering fire in forestry has the characteristics of strong concealment, long duration and difficult visual inspection, etc. It can not only burn tree roots and underground microorganisms causing tree death, but also will re-ignite under certain conditions, leading to greater forest fires, which is extremely destructive to forest ecosystems. However, there is still a lack of in-depth understanding of its temperature change characteristics, and its scientific complications need to be solved urgently. In this study, the surface combustibles of Dingshan of Nanjing Forest Police College were taken as the research object, and field investigation experiments, simulated bed fire experiments and model establishment were carried out through different combustion conditions, including different combustible types, different wind speeds, and different water content of combustibles, to analyze the characteristics of the smoldering temperature change of the surface combustibles, temperature change process and the critical temperature of smoldering fire occurring open flame. The results showed that the temperature of burning dead wood was the highest, and the highest temperature of smoldering can reach 690 ℃. The temperature and persistence of humus smoldering were much higher and longer than other combustibles types, so the probability of re-ignition was higher than that of dead wood, litter and fresh plants. The rising rate of smoldering temperature increased with the increase in wind speed. The rise rate of temperature under the surface fuel smoldering was inversely proportional to the moisture content of fuel, that was, the greater the moisture content was, the slower the rise rate of forest fuel smoldering temperature would be. When the moisture content exceeded 42.3%, the re-igniting probability of fuel was extremely low. This study explored the influence of moisture content, wind speed and fuel type of combustible on the smoldering conversion to open fire, which enriched the forest combustion theory and provided data support for the smoldering fire substance cleaning in forest fire prevention.


[1] TIAN X R, ZHAO F J, SHU L F, et al. Distribution characteristics and the influence factors of forest fires in China[J]. Forest Ecology and Management, 2013, 310: 460-467. DOI:10.1016/j.foreco.2013.08.025.
[2] ZHAO F J, SHU L F, WANG Q H, et al. Emissions of volatile organic compounds from heated needles and twigs of Pinus pumila[J]. Journal of Forestry Research, 2011, 22(2): 243-248. DOI:10.1007/s11676-011-0157-9.
[3] HU T X, SUN L, HU H Q, et al. Soil respiration of the dahurian larch(Larix gmelinii)forest and the response to fire disturbance in da xing'an mountains, China[J]. Scientific Reports, 2017, 7: 2967. DOI:10.1038/s41598-017-03325-4.
[4] MANASYPOV R M, SHIROKOVA L S, POKROVSKY O S. Experimental modeling of thaw lake water evolution in discontinuous permafrost zone: role of peat, lichen leaching and ground fire[J]. Science of the Total Environment, 2017, 580: 245-257. DOI:10.1016/j.scitotenv.2016.12.067.
[5] 李世友, 马爱丽, 王学飞, 等. 3种森林凋落物的阴燃特性[J]. 中南林业科技大学学报, 2009, 29(1): 60-63, 78. DOI:10.14067/j.cnki.1673-923x.2009.01.020.
LI S Y, MA A L, WANG X F, et al. Smoldering combustion characteristics of 3 kinds of forest litter[J]. Journal of Central South University of Forestry & Technology, 2009, 29(1): 60-63, 78.
[6] 何诚, 刘柯珍, 舒立福, 等. 基于红外热成像的林地余火死灰复燃点诊断方法研究[J]. 光谱学与光谱分析, 2018, 38(1): 326-332.
HE C, LIU K Z, SHU L F, et al. The diagnostic methods for resurgences of smoldering fire in the forests by infrared thermal imaging[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 326-332.
[7] 何诚, 舒立福, 张思玉. 我国寒温带林区地下火发生特征及研究[J]. 森林防火, 2014(4): 22-25.
HE C, SHU L F, ZHANG S Y.Characteristics and research of underground fire in temperate forest areas in China [J]. Forest Fire Prevention, 2014(4): 22-25.
[8] 舒立福, 王明玉, 田晓瑞, 等. 大兴安岭林区地下火形成火环境研究[J]. 自然灾害学报, 2003, 12(4): 62-67. DOI:10.3969/j.issn.1004-4574.2003.04.011.
SHU L F, WANG M Y, TIAN X R, et al. Fire environment mechanism of ground fire formation in Daxing'an Mountains[J]. Journal of Natural Disasters, 2003, 12(4): 62-67.
[9] 辛颖, 历美岑. 含水率对森林腐殖质阴燃传播的影响[J]. 消防科学与技术, 2017, 36(4): 448-450.
XIN Y, LI M C. The influence of moisture content on smoldering combustion of forest humus[J]. Fire Science and Technology, 2017, 36(4): 448-450.
[10] 宋泽阳, 范浩然. 扩散供氧对煤阴燃动力学反应影响[J]. 消防科学与技术, 2017, 36(12): 1655-1659.
SONG Z Y, FAN H R. Effects of oxygen transport on coal smoldering kinetics[J]. Fire Science and Technology, 2017, 36(12): 1655-1659.
[11] FRANDSEN W H. Ignition probability of organic soils[J]. Canadian Journal of Forest Research, 1997, 27(9): 1471-1477. DOI:10.1139/cjfr-27-9-1471.
[12] 赵伟涛. 森林泥炭热解动力学特性和阴燃蔓延规律与研究[D]. 合肥:中国科学技术大学, 2014.
ZHAO W T. Thermal decomposition kinetics and smoldering mechanism of forest peat [D]. Hefei: University of Science and Technology of China, 2014.
[13] WATTS A C, KOBZIAR L N. Smoldering combustion and ground fires: ecological effects and multi-scale significance[J]. Fire Ecology, 2013, 9(1): 124-132. DOI:10.4996/fireecology.0901124.
[14] 贾宝山, 解茂昭, 刘红. 阴燃转捩为明火燃烧的分岔特性及气相反应临界状态消失分析[J]. 热科学与技术, 2008, 7(1): 52-57. DOI:10.13738/j.issn.1671-8097.2008.01.012.
JIA B S, XIE M Z, LIU H. Application of bifurcation tieory in transition from smoldering to flaming of fuel[J]. Journal of Thermal Science and Technology, 2008, 7(1): 52-57.
[15] 何芳, 唐秋霞, 李永军, 等. 含水率对玉米秸秆粉阴燃过程的影响[J]. 燃烧科学与技术, 2012, 18(5): 415-420.
HE F, TANG Q X, LI Y J, et al. Effects of moisture content on smoldering of corn stalk powder[J]. Journal of Combustion Science and Technology, 2012, 18(5): 415-420.
[16] 李世友, 陈文龙, 王鹏, 等. 华山松朽木阴燃特性的初步研究[J]. 林业调查规划, 2009, 34(1): 63-65.
LI S Y, CHEN W L, WANG P, et al. Preliminary study on characteristics of smoldering combustion of Pinus armandii deadwood[J]. Forest Inventory and Planning, 2009, 34(1): 63-65.
[17] 路长, 李慧慧, 梁元卿. 自然对流下通风面积对阴燃向明火转化影响的实验研究[J]. 中国科学技术大学学报, 2012, 42(10): 807-812.
LU C, LI H H, LIANG Y Q. Effects of ventilation area on smoldering propagation under natural convection[J]. Journal of University of Science and Technology of China, 2012, 42(10): 807-812.
[18] 辛颖, 薛伟. 贮木场木材剩余物阴燃过程研究[J]. 西部林业科学, 2011, 40(1): 17-20. DOI:10.16473/j.cnki.xblykx1972.2011.01.017.
XIN Y, XUE W. Procedure of smoldering combustion of wood residue in log yard[J]. Journal of West China Forestry Science, 2011, 40(1): 17-20.


收稿日期:2019-07-02 修回日期:2019-08-14
基金项目:国家自然科学基金(31870643,31570645); 中央高校基本科研业务费专项资金资助项目(LGYB201910); 国家重点研发计划(2017YFD0600106); 江苏省“六大人才高峰”培养工程; 南京森林警察学院优秀科技创新团队。
更新日期/Last Update: 2020-03-10