[1]李中义,邵光辉*,马志刚.微生物固化粉土坡面的植物适生性研究[J].林业工程学报,2020,5(02):158-163.[doi:10.13360/ j.issn.2096-1359.201903004]
 LI Zhongyi,SHAO Guanghui*,MA Zhigang.Plant adaptability of silty soil slope protected by microbial solidification[J].Journal of Forestry Engineering,2020,5(02):158-163.[doi:10.13360/ j.issn.2096-1359.201903004]
点击复制

微生物固化粉土坡面的植物适生性研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
158-163
栏目:
森林工程与土建交通
出版日期:
2020-03-11

文章信息/Info

Title:
Plant adaptability of silty soil slope protected by microbial solidification
文章编号:
2096-1359(2020)02-0158-06
作者:
李中义1邵光辉12*马志刚1
1. 南京林业大学土木工程学院,南京 210037; 2. 南京林业大学江苏省水土保持与生态修复重点实验室,南京 210037
Author(s):
LI Zhongyi1 SHAO Guanghui12* MA Zhigang1
1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; 2. Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China
关键词:
粉土 微生物固土 MICP 植物适生性 边坡防护
Keywords:
silt microbial solidification MICP plant adaptability slope protection
分类号:
S157.1
DOI:
10.13360/ j.issn.2096-1359.201903004
文献标志码:
A
摘要:
微生物固化粉土坡面能够提高粉土边坡的抗侵蚀能力,微生物固化防护层的物理力学特性以及植物的适生性是影响该技术应用的重要因素。采用巴氏芽孢杆菌以及胶结液对粉土进行表层喷洒固化处理,研究高羊茅和披碱草在微生物固化表层的粉土中的出苗生长情况。试验结果显示,提高胶结液浓度能够获得更高的粉土表层固化层强度。采用高浓度胶结液的固化层水稳定性更好。粉土表层经微生物固化后高羊茅和披碱草的出苗率随着固化层贯入阻力的提高而降低,出苗时间延迟4~5 d。固化层贯入阻力低于280 kPa时,出苗率可达到80%以上。采用菌液和浓度为0.75~1.00 mol/L、喷洒量0.06 mL/cm2的胶结液喷洒3遍处理,可以保证粉土坡面既具有一定防护强度,又能够保证高羊茅正常生长。粉土经微生物固化表层后不适于披碱草的生长。研究结果表明,微生物固化粉土坡面对草本植物具有一定的适生性; 植物种类及固化层强度是影响出苗率和出苗速率指数的重要因素。将微生物坡面防护与植物防护相结合的粉土坡面防护技术有良好的发展潜力。
Abstract:
Microbial solidified surface layer can improve the anti-erosion stability of silt slope. The physical and mechanical properties of microbial solidified silt protective layer and the plant adaptability are important factors to affect the application of this technology. Sporosarcina pasteurii and cementing solution were used to spray and solidify the silt on the surface. The penetration resistance, water stability and cementing calcite content of the solidified layer were tested to ascertain the effects of different microbial solidifying parameters. The seedling growth of herbaceous plants was investigated for its adaptability properties in the silt surface layer solidified by microbial method. The experimental results indicated that the higher concentration of cementing solution could obtain the higher strength of solidified layer on the silt surface. The water stability of solidified layer formed by the high concentration cementing solution was better. The seedling emergence rate of Festuca elata Keng ex E. Alexeev and Elymus dahuricus Turcz. was decreased with the increase in penetration resistance of the curing layer, and the seedling emergence time was delayed by 4 d to 5 d. In addition, when the penetration resistance of solidified layer was lower than 280 kPa, the emergence rate was over 80%, which could meet the needs of germination and growth. On the other hand, the penetration resistance of solidified layer which was higher than 280 kPa was not suitable for seedling growth of F. elata Keng ex E. Alexeev. The microorganism solidifying treatment with the cementing solution concentration of 0.75-1.00 mol/L and the spraying amount of 0.06 mL/cm2 for 3 times could ensure that the silty soil slope had enough protective strength and the normal growth of F. elata Keng ex E. Alexeev. However, the microbial solidified silt showed a significant adverse effect on the growth of E. dahuricus Turcz. seedlings. E. dahuricus Turcz. couldn't adapt the soil conditions of surface layer solidified by the microbial method. The results showed that the microbial solidified silt slope had an ecological compatibility with some herbaceous plants. Plant species and strength of solidified layer were important factors of plant adaptability. The solidified layer hindered the growth of seedlings, resulting in a decrease in seedling emergence rate and the delay of emergence time. The combined technology of microbial slope protection and plant protection had a great potential in the silty soil slope protection.

参考文献/References:

[1] 陈凡, 董金梅, 朱华. 不同应力路径下改性粉土的力学特性[J]. 南京工业大学学报(自然科学版), 2018, 40(4): 78-85. DOI:10.3969/j.issn.1671-7627.2018.04.013.
CHEN F, DONG J M, ZHU H. Mechanical characteristics of polymer material modified silty soil under different stress path[J]. Journal of Nanjing Tech University(Natural Science Edition), 2018, 40(4): 78-85.
[2] 周云艳, 陈建平, 王晓梅. 植物根系固土护坡机理的研究进展及展望[J]. 生态环境学报, 2012, 21(6): 1171-1177. DOI:10.3969/j.issn.1674-5906.2012.06.029.
ZHOU Y Y, CHEN J P, WANG X M. Progress of study on soil reinforcement mechanisms by root and its expectation[J]. Ecology & Environmental Sciences, 2012, 21(6): 1171-1177.
[3] 付江涛, 李光莹, 虎啸天, 等. 植物固土护坡效应的研究现状及发展趋势[J]. 工程地质学报, 2014, 22(6): 1135-1146. DOI:10.13544/j.cnki.jeg.2014.06.018.
FU J T, LI G Y, HU X T, et al. Research status and development trend of the effect of soil fixation on plant slope protection[J]. Journal of Engineering Geology, 2014, 22(6): 1135-1146.
[4] DEJIONG J T, SOGA K S, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63(4):287-301. DOI:10.1680/geot.SIP13.P.017.
[5] BANG S, MIN S H, BANG S S. Application of microbiologically induced soil stabilization technique for dust suppression[J]. International Journal of Geo-Engineering, 2011, 3(2):27-37.
[6] JIANG N J, SOGA K, KUO M. Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017: 04016100. DOI:10.1061/(ASCE)GT.1943-5606.0001559.
[7] 彭邦阳, 赵志峰. 表面入渗法诱导碳酸钙沉积加固海相粉土研究[J]. 林业工程学报, 2018, 3(5):136-141. DOI:10.13360/j.issn.2096-1359.2018.05.021.
PENG B Y, ZHAO Z F. Improvement of marine silt by microbial induced calcite precipitation by surface percolation[J]. Journal of Forestry Engineering, 2018, 3(5): 136-141.
[8] 邵光辉, 冯建挺, 赵志峰, 等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报, 2017, 33(11): 133-139. DOI:CNKI:SUN:NYGU.0.2017-11-017.
SHAO G H, FENG J T, ZHAO Z F, et al. Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 133-139.
[9] 荣辉. 微生物水泥的研制及其胶结机理[D]. 南京: 东南大学, 2014.
RONG H. Development and cementing mechanism of microbial cement[D]. Nanjing: Southeast University, 2014.
[10] 张抒. 广州地区花岗岩残积土崩解特性研究[D]. 武汉: 中国地质大学, 2009.
ZHANG S. Study on the characteristics of granite residual soil disintegration in Guangzhou[D]. Wuhan: China University of Geosciences, 2009.
[11] 简文彬, 陈文庆, 郑登贤. 花岗岩残积土的崩解试验研究[C]∥中国土木工程学会. 中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册), 北京, 2003: 297-300.
JIAN W B, CHEN W Q, ZHENG D X. Experimental study on disintegration of granite residual soil[C]∥Academic Conference on Soil Mechanics and Geotechnical Engineering, China Society of Civil Engineering, 2003: 297-300.
[12] MORTENSEN B M, HABER M J, DEJONG J T, et al. Effects of environmental factors on microbial induced calcium carbonate pre-cipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349. DOI:10.1111/j.1365-2672.2011.05065.x.
[13] 曹子林, 王挺, 王晓丽, 等. 覆土厚度对中国沙棘幼苗出土及生长的影响[J]. 山东农业大学学报(自然科学版), 2018, 49(5): 738-743. DOI:10.3969/j.issn.1000-2324.2018.05.002.
CAO Z L,WANG T,WANG X L,et al.Effects of covering soil thickness on seedling emergence and growth of hippophae rhamnoides subsp. sinensis[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2018, 49(5): 738-743.
[14] 王蕊, 朱清科, 赵磊磊, 等. 黄土高原土壤生物结皮对植物种子出苗和生长的影响[J]. 干旱区研究, 2011, 28(5): 800-807. DOI:10.13866/j.azr.2011.05.006.
WANG R, ZHU Q K, ZHAO L L, et al. Effects of biological soil crusts on seed emergence and seedling growth in Loess Plateau, North Shaanxi Province[J]. Arid Zone Research, 2011, 28(5): 800-807.
[15] 杜国祯, 马锦荣. 十五种野生草本植物种子在不同温度下萌发能力的研究[J]. 草业学报, 1994, 3(1):18-24.
DU G Z, MA J R. Study on seed germination ability of 15 wild herbaceous plant species under the different temperature[J]. Acta Prataculturae Sinica, 1994, 3(1): 18-24.
[16] 胡振琪, 位蓓蕾, 林衫, 等. 露天矿上覆岩土层中表土替代材料的筛选[J]. 农业工程学报, 2013, 29(19): 209-214. DOI:10.3969/j.issn.1002-6819.2013.19.026.
HU Z Q, WEI B L, LIN S, et al. Selection of topsoil alternatives from overburden of surface coal mines[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 209-214.
[17] DABA S. Note on effects of soil surface crust on the grain yield of sorghum(Sorghum bicolor)in the Sahel[J]. Field Crops Research, 1999, 61(3): 193-199. DOI:10.1016/s0378-4290(98)00161-0.
[18] CHU J, STABNIKOV V, IVANOV V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil[J]. Geomicrobiology Journal, 2012, 29(6):544-549. DOI:10.1080/01490451.2011.592929.
[19] 武婷婷, 吴存祥. 土壤结皮对大豆出苗的影响及黄淮海地区的关键解决技术[J]. 大豆科学, 2017, 36(5): 813-817. DOI:10.11861/j.issn.1000-9841.2017.05.0813.
WU T T, WU C X. The influence of soil crusting on emergence of soybean and its key solution in Huang-Huai-Hai River Valley[J]. Soybean Science, 2017, 36(5): 813-817.
[20] 吴发启, 范文波. 坡耕地暴雨结皮对作物生长发育影响的实验研究[J].干旱区资源与环境, 2003, 17(2): 100-105. DOI:10.3969/j.issn.1003-7578.2003.02.019.
WU F Q, FAN W B. The experimental research about the effect of rain-storm crust to crops growth and development on the sloping farmland[J]. Journal of Arid Land Resources & Environment, 2003, 17(2): 100-105.

备注/Memo

备注/Memo:
收稿日期:2019-03-02 修回日期:2019-05-30
基金项目:国家自然科学基金(51578293); 江苏省大学生创新训练计划项目(201610298062Z)。
作者简介:李中义,男,研究方向为土木工程。通信作者:邵光辉,男,教授。E-mail:gh_shao@njfu.com.cn
更新日期/Last Update: 2020-03-10