[1]王小龙,顾圣东,任亚群,等.砂性土中钢管桩水平承载特性模型试验[J].林业工程学报,2020,5(02):164-170.[doi:10.13360/ j.issn.2096-1359.201901022]
 WANG Xiaolong,GU Shengdong,REN Yaqun,et al.Small-scale model tests of lateral bearing capacity of steel pipe in sand[J].Journal of Forestry Engineering,2020,5(02):164-170.[doi:10.13360/ j.issn.2096-1359.201901022]
点击复制

砂性土中钢管桩水平承载特性模型试验()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
164-170
栏目:
森林工程与土建交通
出版日期:
2020-03-11

文章信息/Info

Title:
Small-scale model tests of lateral bearing capacity of steel pipe in sand
文章编号:
2096-1359(2020)02-0164-07
作者:
王小龙1顾圣东2任亚群1龚维明3
1. 中国能源建设集团江苏省电力设计院有限公司,南京 210024; 2. 中国人民解放军92301部队,北京 100841; 3. 东南大学土木工程学院,南京 210096
Author(s):
WANG Xiaolong1 GU Shengdong2 REN Yaqun1 GONG Weiming3
1. Jiangsu Electric Power Design Institute, Nanjing 210024, China; 2. Chinese People's Liberation Army 92301 Force, Beijing 100841, China; 3. School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
钢管桩 水平承载特性 模型试验 桩-土界面受力机理
Keywords:
steel pipe pile lateral bearing characteristics model tests soil-pile interaction
分类号:
O319.56
DOI:
10.13360/ j.issn.2096-1359.201901022
文献标志码:
A
摘要:
为探究不同桩径的钢管桩水平承载特性及桩土相互作用机理,通过水平荷载作用下钢管桩承载特性的模型试验和PIV(particle image velocimetry)成像技术,研究桩径对钢管桩水平承载特性的影响及桩土界面受力机理。室内试验包括半模型和全模型试验,半模型试验主要分析桩在加载至破坏过程中桩侧位移的变化情况,全模型试验主要分析桩在加载至破坏过程中桩侧位移、弯矩及桩身剪力的变化情况。试验中通过采集桩身各截面应变、桩顶应力、桩顶及土层沉降、桩周土压力等数据实现对桩土相互作用过程的观测,并通过对试验数据的处理和分析,得到水平荷载作用下桩-土相互作用的规律。结果表明,桩径大小对其水平承载力影响较大,尺寸效应的影响在非线性阶段表现十分明显; 钢管桩在水平荷载作用下其最大弯矩点在桩身中部靠上位置,且随着荷载的增加最大弯矩点向下移动,故在设计过程中可重点验算桩身中部附近的抗弯承载力; 桩的刚柔性也是影响桩内力分布及桩侧土体发挥的关键因素; 桩侧土体位移主要集中于5倍桩径以上位置,浅层土体对于抵抗水平荷载发挥关键性作用。
Abstract:
In order to study the lateral bearing characteristics of steel tubular piles and the mechanism of pile-soil interaction with different pile diameters, in this study, small-scale model method tests and PIV(particle image velocimetry)imaging technology were used to analyse the lateral bearing characteristics of steel tubular piles and the soil-pile interaction of pipe piles with different diameters. The laboratory tests included half model and full model tests. The half model test mainly analyzed the change of pile side displacement from loading to failure, while the full model test mainly analyzed the change of pile side displacement, bending moment and shear force of pile body from loading to failure. At the same time, pile-soil interaction process was observed by collecting the strain data of each pile body section, pile top stress, settlements of pile top and soil layer, and earth pressure around the pile. Through the processing and analysis of the test data, the law of pile-soil interaction under the action of horizontal load was obtained. According to the test results, it is concluded that the pile size has a great influence on its lateral bearing capacity. When the pile diameter is doubled, the horizontal bearing capacity is multiplied, and the size effect is very obvious in the nonlinear stage. Under the action of lateral load, the maximum bending moment of steel pipe pile is located at the upper position of the middle part of pile body, and the maximum bending moment moves downward with the increase in load, so the bending capacity near the middle part of the pile body is checked during the design process. The rigidity and flexibility of steel tubular pile have a great influence on the distribution of shear stress on pile body. For flexible pile, the bottom position of pile body is more complicated, while, for rigid pile, the displacement is more inclined to the rotation of rigid body, so the maximum shear stress is near the pile bottom. The soil displacement on the pile side mainly focuses on the position above 5 times the pile diameter, and the shallow soil plays a key role in resisting the horizontal load.

参考文献/References:

[1] 刘新荣, 方焘, 耿大新, 等. 大直径变径桩横向承载特性模型试验[J]. 中国公路学报, 2013, 26(6): 80-86, 190. DOI:10.3969/j.issn.1001-7372.2013.06.012.
LIU X R, FANG T, GENG D X, et al. Model test on lateral bearing behaviors of large diameter pile with variable cross section[J]. China Journal of Highway and Transport, 2013, 26(6): 80-86, 190.
[2] 顾明, 陈仁朋, 孔令刚, 等. 水平偏心荷载下斜桩群桩受力性状的离心机模型试验[J]. 岩土工程学报, 2014, 36(11): 2018-2024. DOI:11779/CJGE201411007.
GU M, CHEN R P, KONG L G,et al. Centrifugal model tests on batter pile groups under eccentric lateral loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2018-2024.
[3] 尤汉强, 杨敏. 循环荷载下海洋风机单桩基础简化分析模型[J]. 岩土工程学报, 2010, 32(S2): 13-16.
YOU H Q, YANG M. Simplified model for single-pile of offshore wind turbine under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 13-16.
[4] 庄培芝, 亓乐, 周志东. 水平荷载作用下单桩承载力影响因素分析[J]. 公路, 2013, 58(8): 12-19. DOI: 10.3969/j.issn.0451-0712.2013.08.003.
ZHUANG P Z, QI L, ZHOU Z D. Influencing factors analysis of horizontal bearing capacity of single pipe pile[J]. Highway, 2013, 58(8): 12-19.
[5] 吕伟华, 邵光辉. 刚性桩复合地基荷载传递规律模型试验[J]. 林业工程学报, 2016, 1(6): 130-136. DOI:10.13360/j.issn.2096-1359.2016.06.022.
LYU W H, SHAO G H. Physical model study on load transfer law of rigid pile composite foundation[J]. Journal of Forestry Engineering, 2016, 1(6): 130-136.
[6] 朱照清, 龚维明, 戴国亮. 大直径钢管桩水平承载力现场试验研究[J]. 建筑科学, 2010, 26(9): 36-39, 32. DOI:10.13614/j.cnki.11-1962/tu.2010.09.010.
ZHU Z Q, GONG W M, DAI G L. Field test research of horizontal bearing capacity of large diameter steel pipe pile[J]. Building Science, 2010, 26(9): 36-39, 32.
[7] 刘君, 刘福海, 孔宪京, 等. PIV技术在大型振动台模型试验中的应用[J]. 岩土工程学报, 2010, 32(3): 368-374.
LIU J, LIU F H, KONG X J, et al. Application of PIV in large-scale shaking table model tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 368-374.
[8] 刘明亮, 朱珍德, 刘金元. 基于PIV技术的锚板抗拉破坏模式识别[J]. 河海大学学报(自然科学版), 2011, 39(1): 84-88. DOI: 10.3876/j.issn.10001980.2011.01.017.
LIU M L, ZHU Z D, LIU J Y. Identification of failure modes for uplift anchor plates based on PIV technology[J]. Journal of Hohai University(Natural Sciences), 2011, 39(1): 84-88.
[9] 胡耘, 张嘎, 张建民, 等. 离心场中土体图像采集与位移测量系统的研制与应用[J]. 岩土力学, 2010, 31(3): 998-1002. DOI:10.3969/j.issn.1000-7598.2010.03.057.
HU Y, ZHANG G, ZHANG J M, et al. Development of image capture and displacement measurement system in centrifuge modeling and its application[J]. Rock and Soil Mechanics, 2010, 31(3): 998-1002.
[10] 李元海, 朱合华, 上野胜利, 等. 基于图像相关分析的砂土模型试验变形场量测[J]. 岩土工程学报, 2004, 26(1): 36-41. DOI: 10.3321/j.issn:1000-4548.2004.01.006.
LI Y H, ZHU H H, KATSUTOSHI U, et al. Deformation field measurement for granular soil model using image analysis[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 36-41.
[11] 陈亚东, 宰金珉, 王旭东. 基于数字图像技术的桩周土体位移场测量[J]. 建筑科学, 2010, 26(3): 90-92. DOI:10.3969/j.issn.1002-8528.2010.03.021.
CHEN Y D, ZAI J M, WANG X D. Displacement field measurement of soil around the pile based on digital image correlation method[J]. Building Science, 2010, 26(3): 90-92.
[12] 李元海, 靖洪文, 曾庆有. 岩土工程数字照相量测软件系统研发与应用[J]. 岩石力学与工程学报, 2006, 25(S2): 3859-3866. DOI:10.3321/j.issn:1000-6915.2006.z2.082.
LI Y H, JING H W, ZENG Q Y. Development and application of digital photogrammetry software package for geotechnical engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3859-3866.
[13] 李元海. 数字照相变形量测技术及其在岩土模型实验中的应用研究[J]. 岩石力学与工程学报, 2005, 24(7): 1273. DOI:10.3321/j.issn:1000-6915.2005.07.033.
LI Y H. Study on digital photography-based deformation measurement technique and its application in geo-physical model experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(7): 1273.
[14] 李元海, 靖洪文, 朱合华, 等. 基于图像相关分析的土体剪切带识别方法[J]. 岩土力学, 2007, 28(3): 522-526. DOI: 10.3969/j.issn.1000-7598.2007.03.017.
LI Y H, JING H W, ZHU H H, et al. A technical of identifying shear band accurately in granular soil using image correlation analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 28(3): 522-526.
[15] 徐文杰, 王玉杰, 陈祖煜, 等. 基于数字图像技术的土石混合体边坡稳定性分析[J]. 岩土力学, 2008, 29(S1): 341-346. DOI:10.16285/j.rsm.2008.s1.049.
XU W J, WANG Y J, CHEN Z Y, et al. Stability analysis of soil-rock mixed slope based on digital image technology[J]. Rock and Soil Mechanics, 2008, 29(S1): 341-346.

备注/Memo

备注/Memo:
收稿日期:2019-01-10 修回日期:2019-10-29
基金项目:国家自然科学基金(51678145); 江苏省电力设计院有限公司科技项目(32-JK-2015-001)。
作者简介:王小龙,男,工程师,研究方向为岩土勘测及设计。E-mail: wangxiaolong@qq.jspdi.com.cn
更新日期/Last Update: 2020-03-10