[1]贾鹤鸣,张森,宋文龙*,等.基于CFD的微型植物工厂湿热环境数值分析[J].林业工程学报,2018,3(06):122-127.[doi:10.13360/j.issn.2096-1359.2018.06.020]
 JIA Heming,ZHANG Sen,SONG Wenlong*,et al.Numerical analysis of humid and hot environment in micro plant factory based on CFD[J].Journal of Forestry Engineering,2018,3(06):122-127.[doi:10.13360/j.issn.2096-1359.2018.06.020]
点击复制

基于CFD的微型植物工厂湿热环境数值分析()
分享到:

《林业工程学报》[ISSN:2096-1359/CN:32-1862/S]

卷:
3
期数:
2018年06期
页码:
122-127
栏目:
装备与信息化 执行主编:周宏平
出版日期:
2018-11-15

文章信息/Info

Title:
Numerical analysis of humid and hot environment in micro plant factory based on CFD
文章编号:
2096-1359(2018)06-0122-06
作者:
贾鹤鸣张森宋文龙*朱柏卓邢致恺
东北林业大学机电工程学院,哈尔滨 150040
Author(s):
JIA Heming ZHANG Sen SONG Wenlong* ZHU Baizhuo XING Zhikai
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
关键词:
微型植物工厂 温湿度分布 多孔介质模型 组分传输模型
Keywords:
micro plant factory temperature and humidity distribution porous media model component transfer model
分类号:
TP273
DOI:
10.13360/j.issn.2096-1359.2018.06.020
文献标志码:
A
摘要:
为进一步提高植物生长信息的精确检测与培养环境的优化调控,基于计算流体动力学对微型植物工厂内部空气传输过程进行三维数值模拟,从而分析得出内部温湿度场的分布模式。通过仿真分析与实验测试结果的对比研究表明:微型植物工厂培养箱内部温湿度场受气流场的影响分布不均匀,风速高的区域温度相对较低。相对湿度与温度呈现强烈的耦合关系,相对湿度模拟值与实测值平均相对误差为5.38%; 温度模拟值与实测值平均误差为0.875 ℃,平均相对误差为4.41%,数值模拟结果与试验测试结果吻合度较高。相对湿度分布与对应的温度分布模式类似,中部植物生长培养区的温湿度分布均匀一致,其余空间温湿度分布梯度明显且顶部温度高湿度低,底部温度低湿度高,整体分层明显,需要对培养箱进行结构优化,减少温湿度分层现象,以更好地促进植物的生长。
Abstract:
With the rapid development of computational fluid dynamics(CFD)technology, the application of information acquisition based on fluid mechanics technology for the monitoring of plant growth information can scientifically help researchers to dynamically grasp the changes of plant growth information and effectively promote the healthy growth of plants. The use of efficient plant growth information monitoring methods for real-time control of the culture environment is an important indicator and main feature of plant development. Therefore, the technology for effectively monitoring plant growth information and optimizing culture environment is important for current plant modernization and information development. In order to further improve the accurate detection of plant growth information and optimize the regulation of culture environment, based on the CFD, this paper developed the three-dimensional numerical simulation of air transport process in micro plant factory, so as to obtain the distribution mode of internal temperature and humidity field. In the numerical simulation, the plant factory model was established, and the models such as turbulence model, component transfer model and porous media model were selected. Through comparative investigation with simulation analysis and experimental validation, the results show that the micro plant factory incubator of internal temperature and humidity field affected by the flow field distribution is not uniform, and the temperature of the area of high wind speed is relatively lower. There is a strong coupling relationship between the relative humidity and temperature. The relative error between simulated and measured values of relative humidity is 5.38%, the average error between simulated and measured temperature is 0.875 ℃, and the average relative error is 4.41%. The relative humidity distribution and corresponding temperature distribution patterns are similar to that of the central plant growth culture temperature and humidity area distribution uniformity. The temperature and humidity gradient distribution of the remaining space is obvious. It indicates that the high temperature/low humidity at the top, and low humidity/high temperature at the bottom. The overall stratification is obvious, which is not conducive to the normal growth of the plant. To reduce the temperature and humidity stratification, and then to promote plant heathy growth, the structure of the incubator needs to be optimized, such as, adding vents, adjusting the outlet position of the fan, and adding an internal circulation fan.

参考文献/References:

[1] 高洁, 郑德聪. 日光温室湿度分布的数值模拟[J]. 灌溉排水学报, 2017,36(4):31-36.
GAO J, ZHENG D C. The research on the numerical simulation of humidity distribution in solar greenhouse[J]. Journal of Irrigation and Drainage, 2017, 36(4):31-36.
[2] 沈敏. 食用菌工厂菇房内环境的模拟验证与优化研究[D]. 镇江:江苏大学,2016.
SHEN M. Research on the simulation and optimization of the environment of edible mushroom factory[D]. Zhenjiang: Jiangsu University, 2016.
[3] 郭腾腾, 涂洁磊, 盛钰清, 等. 基于CFD稳态模拟的光伏玻璃温室温度分布模拟计算[J]. 云南师范大学学报(自然科学版), 2018, 38(2):11-15.
GUO T T, TU J L, SHENG Y Q, et al. Simulation calculation of photovoltaic glass greenhouse temperature distribution based on CFD steady state simulation[J]. Journal of Yunnan Normal University(Natural Sciences Edition), 2018, 38(2):11-15.
[4] 王新忠, 张伟建, 张良, 等. 基于CFD的夏季屋顶全开型玻璃温室自然通风流场分析[J]. 农业机械学报,2016,47(10):332-337.
WANG X Z, ZHANG W J, ZHANG L, et al. Relationship between indoor temperature and rolling shutter opening of solar greenhouse based on CFD[J]. Journal of Agricultural Mechanization, 2016, 47(10):332-337.
[5] 李姝玉. 基于CFD的下沉式日光温室保温性能分析[J]. 江西农业, 2017(17):27.
LI S Y. Analysis of thermal insulation performance of sunken solar greenhouse based on CFD[J]. Jiangxi Agriculture,2017(17):27.
[6] de LAMOTTE A, DELAFOSSE A, CALVO S, et al. Identifying dominant spatial and time characteristics of flow dynamics within free-surface baffled stirred-tanks from CFD simulations[J]. Chemical Engineering Science,2018,192:128-142.
[7] 杨泽文, 贾鹤鸣, 宋文龙, 等. 基于能量角度的植物工厂优化控制[J]. 江苏农业科学, 2018, 46(14):238-241.
[8] 郑楠, 茹煜, 汪东, 等. 三级林用消防泵内部流场模拟及分析[J]. 林业工程学报, 2017, 2(3):124-130.
ZHENG N, RU Y, WANG D, et al. Flow field simulation and working condition analysis of triple-stage forest fire pump[J]. Journal of Forestry Engineering, 2017, 2(3):124-130.
[9] 侯思宇. 基于CFD模型的设施温室小气候环境预测和控制研究[D]. 南京:南京农业大学, 2016.
HOU S Y. Research prediction on the control of greenhouse microclimate environment prediction based on CFD model[D]. Nanjing: Nanjing Agricultural University, 2016.
[10] 王彪. 光伏温室光热环境数值建模及性能分析[D]. 杭州:浙江工业大学,2017.
WANG B. Study of solar thermal numerical model and performance analysis for the photovoltaic greenhouse[D]. Hangzhou: Zhejiang University of Technology, 2017.
[11] 张芳. 基于CFD技术的大跨度温室喷雾降温热环境模拟[D]. 北京:中国农业科学院, 2017.
ZHANG F. Simulation in a large-scale greenhouse with fogging system based on CFD[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[12] 张建文, 贺亚如, 王庆贵. 农业温室系统的多相流传递过程研究进展[J]. 江西农业学报, 2016, 28(7):126-130.
ZHANG J W, HE Y R, WANG Q G. Research advance in multiphase flow transfer process of agricultural greenhouse system[J]. Acta Agriculture Jiangxi, 2016, 28(7):126-130.
[13] 贾鹤鸣, 朱传旭, 宋文龙, 等. 基于嵌入式控制器的微型植物工厂系统设计[J]. 森林工程, 2017, 33(4):58-64.
JIA H M, ZHU C X, SONG W L, et al. Design of mini-plant factory system based on embedded controller[J]. Forest Engineering, 2017, 33(4):58-64.
[14] 张艺萌. 基于CFD的寒地水稻育秧大棚环境数值模拟分析与研究[D]. 大庆:黑龙江八一农垦大学, 2018.
ZHANG Y M. Numerical simulation analysis and research of the cold rice seedling greenhouse environment based on CFD[D]. Daqing: Heilongjiang Bayi Agricultural University,2018.
[15] 杨泽文, 贾鹤鸣, 宋文龙, 等. 基于奇异摄动理论的植物工厂温度控制[J]. 计算机工程与应用, 2018(14):224-228, 255.
YANG Z W, JIA H M, SONG W L, et al. Control of plant factory based on singular perturbation[J]. Computer Engineering and Applications, 2018(14):224-228, 255.

相似文献/References:

[1]韩骏骋,贾鹤鸣*,李瑶,等.基于计算流体力学的微型植物工厂温湿度环境模拟及优化方案[J].林业工程学报,2019,4(06):136.[doi:10.13360/j.issn.2096-1359.2019.06.019]
 HAN Juncheng,JIA Heming*,LI Yao,et al.Temperature and humidity environment simulation and optimum scheme of micro plant factory based on computational fluid dynamics[J].Journal of Forestry Engineering,2019,4(06):136.[doi:10.13360/j.issn.2096-1359.2019.06.019]

备注/Memo

备注/Memo:
收稿日期:2018-02-08 修回日期:2018-08-20
基金项目:国家自然科学基金(31470714); 黑龙江省研究生教育创新工程资助项目(JGXM_HLJ_2016014)。
作者简介:贾鹤鸣,男,副教授,研究方向为基于植物生体信息的最适环境控制技术。通信作者:宋文龙,男,教授。E-mail:wlsong 139@126.com
更新日期/Last Update: 2018-11-15