WANG Jie,ZHANG Jian,YU Yang,et al.Synthesis of Si/C composites derived from directly-carbonized reed plants as high-performance anode for lithium ion batteries[J].Journal of Forestry Engineering,2019,4(05):84-91.[doi:10.13360/j.issn.2096-1359.2019.05.012]





Synthesis of Si/C composites derived from directly-carbonized reed plants as high-performance anode for lithium ion batteries
1.南京林业大学化学工程学院,南京 210037; 2.南京林业大学, 江苏省林业资源高效加工利用协同创新中心,南京 210037; 3.南京林业大学汽车与交通工程学院,南京 210037
WANG Jie12 ZHANG Jian1 YU Yang1 ZHANG Yong3 ZHU Xiuying1 YUE Hongyuan1 WANG Ziqi1 ZHOU Wenhao1
1.College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; 2.Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; 3.College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
生物质 复合 锂离子电池 负极
biomass silicon composite lithium-ion battery anode
以可再生生物质芦苇叶为原料,通过热解碳化、CO2高温脱碳和镁热还原三步热处理制备Si/C复合材料。利用扫描电子显微镜、热重与差热分析、拉曼光谱、X射线衍射等手段对芦苇叶热解碳化产物、CO2高温脱碳产物和最终合成的Si/C复合材料的形貌、组成和结晶度进行表征,同时对Si/C复合材料的电池性能进行综合评估。结果表明:在1 000 ℃下CO2高温脱碳处理6 h制备得到最佳的镁热还原前驱体,前驱体里的无定型SiO2在镁热还原反应中基本都转化成晶体硅,最终的Si/C复合物拥有约9.1% 的N掺杂碳含量和高结晶度的晶体硅,保留了原始芦苇叶的三维硅骨架结构; Si/C电极在电流密度100 mA/g下的充电比容量高达935.7 mAh/g,在电流密度1 000和2 000 mA/g下比容量分别为520.7和277.8 mAh/g,且循环过程中库伦效率均在95%以上,表现出优越的倍率性能和良好的循环性能。此外,该制备工艺简单,这种低成本、储量丰富的生物质硅源材料芦苇叶有望作为下一代高能量密度锂离子电池硅负极的生产原料,推动实现硅负极的规模化生产。
Silicon is a promising candidate for an anode of high-energy lithium ion batteries because of its high theoretical specific capacity(3 579 mAh/g for Li15Si4, ten times than commercial graphite), low discharge voltage(<0.5 V vs.Li/Li+), environmental friendliness, and natural abundance.Unfortunately, the wide utilization of silicon is hampered by several major drawbacks such as its large volume change(400%)during lithium ion insertion/extraction processes, low electrical conductivity(10-3 S/cm)and ionic conductivity(10-14-10-13 cm2/s).A useful strategy is to combine nanostructure silicon with carbon materials for reducing the volume change of Si.Furthermore, it has found that silicon nanomaterials have potential application in a number of areas.In this work, the scalable synthesis of Si/C composites was directly derived from natural reed leaves by three steps, namely, pyrolysis carbonization, high-temperature CO2 decarburization and magnesiothermic reduction.Natural reed leaves provided both carbon and silicon sources.The synthesized Si/C composites had a uniform carbon dispersion among the silicon nanoparticles by the CO2 high-temperature decarburization treatment at the temperature of 1 000 ℃ for 6 h and the N-doping carbon content was about 9.1%.The resultant porous Si/C architectures were prepared by the magnesiothermic reduction.During the magnesiothermic reduction process, amorphous SiO2 could be converted into silicon with high crystallinity.The obtained Si/C composite electrodes exhibited a large specific capacity of 935.7 mAh/g at a current density of 100 mA/g.At the higher current density of 1 000 mA/g, there was a capacity of 520.7 mAh/g and 277.8 mAh/g even at a rate of 2 000 mA/g, demonstrating good rate performance.In additon, coulonbic efficiency of each cycle was above 95% for the Si/C composite electrode.Moreover, the uniquely small size and porous nature of the obtained Si/C complex gave it superior performance as the Li-ion battery anode.The small size, high porosity and interconnectedness of the nano-Si derived from reed leaves were the reasons to achieve such high performance, which reduced the lithium ion diffusion path and improved the penetration of the electrolyte.The N-doping carbon in silicon nanoparticles could enhance the electrical conductivity and ease the volume change of Si during the charging and discharging processes.The unique morphology was inherited by the natural silica nanoparticles in reed leaves and the successful preservation of the nanostructure throughout the high-temperature CO2 decarburization process.Thus, the simplicity, effectiveness, and scalability of the fabrication process made the reed leaf-derived Si/C composite anode promising for next generation Li-ion batteries.


[1] TARASCON J M, M ARMAND.Issues and challenges facing rechargeable lithium batteries[J].Nature, 2001, 414(6861):359-367.DOI:10.1038/35104644.
[2] ARMAND M, TARASCON J M.Building better batteries[J].Nature, 2008, 451(7179):652-657.DOI:10.1038/451652a.
[3] KIM S, HWANG C, PARK S Y, et al.High-yield synthesis of single-crystal silicon nanoparticles as anode materials of lithium ion batteries via photosensitizer-assisted laser pyrolysis[J].Journal of Materials Chemistry A, 2014, 2(42):18070-18075.DOI:10.1039/c4ta03358b.
[4] ZUO X X, ZHU J, MüLLER-BUSCHBAUM P, et al.Silicon based lithium-ion battery anodes: a chronicle perspective review[J].Nano Energy, 2017, 31:113-143.DOI:10.1016/j.nanoen.2016.11.013.
[5] BEAULIEU L Y, EBERMAN K W, TURNER R L, et al.Colossal reversible volume changes in lithium alloys[J].Electrochemical and Solid State Letters, 2001, 4(9):A137-A140.DOI:10.1149/1.1388178.
[6] LUO F, CHU G, XIA X X, et al.Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries[J].Nanoscale, 2015, 7(17): 7651-7658.DOI:10.1039/c5nr00045a.
[7] LI H.The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J].Solid State Ionics, 2000, 135(1/2/3/4):181-191.DOI:10.1016/s0167-2738(00)00362-3.
[8] ZHANG Y, ZHU Y S, FU L J, et al.Si/C composites as negative electrode for high energy lithium ion batteries[J].Chinese Journal of Chemistry, 2017, 35(1):21-29.DOI:10.1002/cjoc.201600663.
[9] CHEN T, WU J, ZHANG Q L, et al.Recent advancement of SiOx based anodes for lithium-ion batteries[J].Journal of Power Sources, 2017, 363:126-144.DOI:10.1016/j.jpowsour.2017.07.073.
[10] KOHANDEHGHAN A, CUI K, KUPSTA M, et al.Nanometer-scale Sn coatings improve the performance of silicon nanowire LIB anodes[J].Journal of Materials Chemistry A, 2014, 2(29): 11261.DOI:10.1039/c4ta00993b.
[11] KIM H, HAN B, CHOO J, et al.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries[J].Angewandte Chemie International Edition, 2008, 47(52):10151-10154.DOI:10.1002/anie.200804355.
[12] HODSON M J, WHITE P J, MEAD A, et al.Phylogenetic variation in the silicon composition of plants[J].Annals of Botany, 2005, 96(6):1027-1046.DOI:10.1093/aob/mci255.
[13] CURRIE H A, PERRY C C.Silica in plants: biological, biochemical and chemical studies[J].Annals of Botany, 2007, 100(7):1383-1389.DOI:10.1093/aob/mcm247.
[14] LIU J, KOPOLD P, VAN AKEN P A, et al.Energy storage materials from nature through nanotechnology: a sustainable Route from reed plants to a silicon anode for lithium-ion batteries[J].Angewandte Chemie International Edition, 2015, 54(33):9632-9636.DOI:10.1002/anie.201503150.
[15] KIM W S, HWA Y, SHIN J H, et al.Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries[J].Nanoscale, 2014, 6(8):4297.DOI:10.1039/c3nr05354g.
[16] LIU N, HUO K F, MCDOWELL M T, et al.Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes[J].Scientific Reports, 2013, 3:1919.DOI:10.1038/srep01919.
[17] CHAKRAVERTY A, MISHRA P, BANERJEE H D.Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica[J].Journal of Materials Science, 1988, 23(1):21-24.DOI:10.1007/bf01174029.
[18] KIM H, HAN B, CHOO J, et al.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries[J].Angewandte Chemie International Edition, 2008, 47(52):10151-10154.DOI:10.1002/anie.200804355.
[19] NIE P, LIU X Y, FU R R, et al.Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries[J].ACS Energy Letters, 2017, 2(6):1279-1287.DOI:10.1021/acsenergylett.7b00286.
[20] WANG J, RAN R, SUNARSO J, et al.Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels[J].Journal of Power Sources, 2017, 347:259-269.DOI:10.1016/j.jpowsour.2017.02.072.
[21] NG S H, WANG J Z, WEXLER D, et al.Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries[J].The Journal of Physical Chemistry C, 2007, 111(29):11131-11138.DOI:10.1021/jp072778d.
[22] ZUO P J, YIN G P, MA Y L.Electrochemical stability of silicon/carbon composite anode for lithium ion batteries[J].Electrochimica Acta, 2007, 52(15):4878-4883.DOI:10.1016/j.electacta.2006.12.061.
[23] MEIER C, LüTTJOHANN S, KRAVETS V G, et al.Raman properties of silicon nanoparticles[J].Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32(1/2):155-158.DOI:10.1016/j.physe.2005.12.030.
[24] QIE L, CHEN W M, XU H H, et al.Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J].Energy & Environmental Science, 2013, 6(8):2497.DOI:10.1039/c3ee41638k.
[25] HOROWITZ Y, HAN H L, ROSS P N, et al.In situ potentiodynamic analysis of the Electrolyte/Silicon electrodes interface reactions-a sum frequency generation vibrational spectroscopy study[J].Journal of the American Chemical Society, 2016, 138(3):726-729.DOI:10.1021/jacs.5b10333.
[26] YUE C, YU Y J, WU Z G, et al.Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays[J].Nanoscale, 2014, 6(3):1817-1822.DOI:10.1039/c3nr05181a.


 ZHOU Jianbin,ZHOU Bingliang,MA Huanhuan,et al.Integrated innovation and application of biomass gasification poly-generation technology[J].Journal of Forestry Engineering,2016,1(05):1.[doi:10.13360/j.issn.2096-1359.2016.02.001]
 LI Zhen,WU Jiaxiong.Fatigue life analysis based on the temperature field of flat die[J].Journal of Forestry Engineering,2016,1(05):96.[doi:10.13360/j.issn.2096-1359.2016.02.017]
 LI Zhen,ZHAO Yulong,WU Jiaxiong,et al.Influence of structural parameters on flat mould plate[J].Journal of Forestry Engineering,2017,2(05):113.[doi:10.13360/j.issn.2096-1359.2017.01.020]
 CUI Yong,CHANG Jianmin,WANG Wenliang.Synthesis process of bio-oil phenolic resin used for glass-fiber reinforced plastic[J].Journal of Forestry Engineering,2017,2(05):67.[doi:10.13360/j.issn.2096-1359.2017.06.012]
 JI Tuo,ZHU Jiahua*.Natural wood templated polyaniline catalysts for energy efficient saccharide-HMF conversion[J].Journal of Forestry Engineering,2019,4(05):59.[doi:10.13360/j.issn.2096-1359.2019.01.009]
 SONG Guoyong.The development of catalytic fractionation and conversion of lignocellulosic biomass under lignin-first strategy[J].Journal of Forestry Engineering,2019,4(05):1.[doi:10.13360/j.issn.2096-1359.2019.05.001]
[10]陈志俊,高鹤,李伟,等.生物质基光学材料研究进展[J].林业工程学报,2020,5(03):1.[doi:10.13360/ j.issn.2096-1359.201906020]
 CHEN Zhijun,GAO He,LI Wei,et al.Research progress of biomass-based optical materials[J].Journal of Forestry Engineering,2020,5(05):1.[doi:10.13360/ j.issn.2096-1359.201906020]


收稿日期:2019-03-13 修回日期:2019- 䥺Symbol`@@ 05-25
基金项目:国家自然科学基金(21706135); 江苏省自然科学基金(BK20160920); 江苏省重点研发计划产业前瞻与共性关键技术(BE2017008-2); 江苏高校优势学科建设工程资助项目(PAPD); 2018年大学生实践创新训练计划项目(2018NFUSPITP081)。
更新日期/Last Update: 2019-09-10