参考文献/References:
[1] 李伟光, 张占宽. 表面微织构硬质合金对桦木摩擦特性的影响[J]. 林业工程学报, 2018, 3(1): 103-108. DOI:10.13360/j.issn.2096-1359.2018.01.017.
LI W G, ZHANG Z K. Effect of surface micro-texture cemented carbide on friction characteristics of birch[J]. Journal of Forestry Engineering, 2018, 3(1): 103-108.
[2] 易斌. 硬质合金刀具材料激光微织构表面摩擦磨损特性研究[D]. 湘潭: 湘潭大学, 2014.
YI B. Study on friction and wearcharacteristics of laser micro-textured surface on cemented carbides tool materials[D]. Xiangtan: Xiangtan University, 2014.
[3] KAWASEGI N, SUGIMORI H, MORIMOTO H, et al. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior [J]. Precision Engineering, 2009, 33: 248-254. DOI:10.1016/j.precisioneng.2008.07.005.
[4] DUAN R, DENG J X, GE D L, et al. An approach to predict derivative-chip formation in derivative cutting of micro-textured tools[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1/2/3/4): 973-982. DOI:10.1007/s00170-017-1285-y.
[5] 邱孝聪, 樊曙天, 伍勇. 表面织构改善摩擦磨损性能的研究进展[J]. 润滑与密封, 2013, 38(8): 121-124. DOI:10.3969/j.issn.0254-0150.2013.08.025.
QIU X C, FAN S T, WU Y. Study of surface texture for improving friction and wear properties[J]. Lubrication Engineering, 2013, 38(8): 121-124.
[6] LI W G, ZHANG Z K. Effect of micro-pit texture parameters on characteristics of friction between cemented carbide and wood[J]. Wood Science and Technology, 2019, 53(3): 687-702. DOI:10.1007/s00226-019-01091-2.
[7] LI W G, ZHANG Z K. Tribological behavior of microtextured cemented carbide in contact with wood[J]. Forest Products Journal, 2018, 68(4): 465-470. DOI:10.13073/FPJ-D-17-00068.
[8] BEER P, GOGOLEWSKI P, KLIMKE J, et al. Tribological behaviour of sub-micron cutting-ceramics in contact with wood-based materials[J]. Tribology Letters, 2007, 27(2): 155-158. DOI:10.1007/s11249-007-9212-2.
[9] 曹平祥. 木工刀具抗磨技术进展[J]. 林业科技开发, 1997, 11(6): 10-12. DOI:10.13360/j.issn.1000-8101.1997.06.004.
CAO P X. The progress of woodworking tools anti-wear technology[J]. China Forestry Science and Technology, 1997, 11(6): 10-12.
[10] GUO X L, ZHU Z L, EKEVAD M, et al. The cutting performance of Al2O3 and Si3N4 ceramic cutting tools in the milling plywood.[J]. Advances in Applied Ceramics, 2017, 117(1): 16-22. DOI:10.1080/17436753.2017.1368946.
[11] MCKENZIE W M, KARPOVICH H. The frictional behaviour of wood[J]. Wood Science and Technology, 1968, 2(2): 139-152. DOI:10.1007/BF00394962.
[12] LI R R, CAO P X, ZHANG S, et al. Prediction of cutting force during gypsum fiber composite milling process using response surface methodology[J]. Wood and Fiber Science, 2017, 49(4): 453-460.
[13] MCKENZIE W M. Friction coefficient as a guide to optimum rake angle in wood machining[J]. Wood Science and Technology, 1991, 25(5): 397-401. DOI:10.1007/BF00226179.
[14] BOWDEN F, TABOR D. The friction and lubrication of solids[M]. London: Oxford University Press, 1950.
[15] 郭晓磊, 朱南峰, 王洁, 等. 切削速度和切削厚度对纤维板切削力和表面粗糙度的影响[J]. 林业工程学报, 2016, 1(4): 114-117. DOI:10.13360/j.issn.2096-1359.2016.04.019.
GUO X L, ZHU N F, WANG J, et al. Effect of cutting speed and chip thickness on cutting forces and surface roughness of fiberboard[J]. Journal of Forestry Engineering, 2016, 1(4): 114-117.