WEI Dongfang,WEI Zhonghua,KANESHIRO Hokaku,et al.Preparation of bamboo charcoal pottery and its gas adsorption and humidity regulation performance[J].Journal of Forestry Engineering,2020,5(01):109-113.[doi:10.13360/j.issn.2096-1359.201905025]



生物质能源与材料 执行主编:勇强 许凤


Preparation of bamboo charcoal pottery and its gas adsorption and humidity regulation performance
韦冬芳1韦仲华1金城凤鹤1王义安2林华2*PEN Sytharith3
1.桂林新竹大自然生物材料有限公司,广西 桂林 541004; 2.桂林理工大学环境科学与工程学院,广西 桂林 541004; 3.柬埔寨理工学院水文和水资源工程学院,金边 12000
WEI Dongfang1 WEI Zhonghua1 KANESHIRO Hokaku1 WANG Yian2 LIN Hua2* PEN Sytharith3
1. Guilin Xinzhu Natural Functional Material Co. Ltd., Guilin 541004, Guangxi, China; 2. College of Environmental Science and Engineering, Guilin University of Technology Guilin, Guilini 541004, Guangxi, China; 3. Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnom Penh 12000, Cambodia
吸附材料 竹炭陶 竹炭 调湿材料 空气净化剂
adsorption material bamboo charcoal pottery bamboo charcoal humidity control material air purifier
基于开发和利用生物质竹炭材料,以竹炭粉、凹凸棒、硅藻土等为原料,制备竹炭陶瓷复合材料,从而避免传统炭吸附材料易碎和粉尘污染的缺点。首先,将原料通过陶瓷造粒工艺制备成直径为2~5 mm的小球; 然后,在N2气氛中1 250 ℃下烧结为竹炭陶小球,并对其结构和吸附性能进行了研究。XRD测试结果表明,竹炭陶瓷复合材料在烧结前后并未改变竹炭陶晶体结构。原料的SEM测试结果表明,竹炭粉在微观结构上存在1 μm 左右的大孔,其中硅藻土的微观形貌为多孔圆盘状结构,圆盘的直径分布在20~50 μm,孔道直径在0.1~1.2 μm; 竹炭陶的SEM测试结果表明,断面结构疏松多孔,经过复合和烧结后,仍然保持了原有的孔道结构,保障了竹炭陶的吸附性能。BET法测试结果表明,竹炭陶的比表面积达到118.54 m2/g。吸附性能测试表明,竹炭陶对水分吸附率达到22.0%,对甲醛、氨气及硫化氢等有害气体的吸附率分别达到87.7%,94.6%和96.3%。实验结果表明,竹炭陶具有良好的吸湿和气体吸附性能,是一种良好的空气净化材料,在室内环境和水处理等方面具有广阔的应用前景。
Based on the development and utilization of biomass materials of bamboo charcoal, the bamboo charcoal pottery was prepared using bamboo charcoal powder, palygorskite, and diatomite, to address the drawbacks of traditional carbon adsorption materials such as fragility and dust pollution. Firstly, the ceramic pellets with a diameter of 2-5 mm was prepared through the ceramic granulation process, and then sintered into bamboo charcoal pottery at 1 250 ℃ in N2 atmosphere. Secondly, its microstructure and adsorption properties were examined. The XRD test results showed that the crystal structure of the bamboo charcoal pottery did not change before and after the sintering. It was indicated that the sintering did not change its structure and guaranteed the adsorption performance of the bamboo charcoal. The morphology of the raw materials was tested by SEM, and the results showed that the bamboo charcoal powder had macro pores of about 1 μm in the microstructure. The morphology of diatomite was disc-like structure with porous. The diameter of the disc was about 20-50 μm, and the diameter of the pore was about 0.1-1.2 μm. The morphology of the palygorskite was a needle-like structure with a diameter of 50-100 nm and a length of 500-1 000 nm. The SEM examination results showed that the cross-sectional structure of the bamboo charcoal pottery was loose and porous, and the original pore structure still maintained unchanged after the sintering, which ensured its adsorption performance. The BET test results showed that the specific surface area of the bamboo charcoal pottery reached 118.54 m2/g, and its adsorption curve was consistent with the Type IV isotherm adsorption. The adsorption performance test showed that the adsorption rates of harmful gases such as formaldehyde, ammonia and hydrogen sulfide reached 87.7%, 94.6% and 96.3%, respectively. The water absorption rates of the bamboo charcoal and bamboo charcoal pottery were 5.1% and 22.0%, respectively. It can be seen that the water absorption rate was 4.3 times higher than that of the raw bamboo charcoal. This indicated that it had good moisture absorption and gas adsorption properties and could be a good air purification material. By using this method, the powdered bamboo charcoal can meet the requirements of recycling, which will broaden the applications in indoor environment and water treatments.


[1] 谢光辉, 陈文俊, 谢凯名. 室内空气污染及对策分析[J]. 环境与发展, 2018, 30(4): 44-45. DOI:10.16647/j.cnki.cn15-1369/X.2018.04.024.
XIE G H, CHEN W J, XIE K M. Indoor air pollution and countermeasures[J]. Environment and Development, 2018, 30(4): 44-45.
[2] 王佑君, 吴鸿辉, 侯立安. 密闭空间有害气体的吸附材料研究[J]. 西安石油大学学报(自然科学版), 2009, 24(3): 73-75. DOI:10.3969/j.issn.1673-064X.2009.03.020.
WANG Y J, WU H H, HOU L A. Study on adsorptive materials for harmful gases in closed space[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2009, 24(3): 73-75.
[3] 武志富, 范方方. 活性炭负载高锰酸钾用于吸附室内有害气体-甲醛[J]. 广西民族大学学报(自然科学版), 2017, 23(23): 87-92. DOI:10.16177/j.cnki.gxmzzk.2017.02.015.
WU Z F, FAN F F. Adsorption of harmful formaldehyde gas in room by activated carbon loaded with KMnO4[J]. Journal of Guangxi University for Nationalities(Natural Science Edition), 2017, 23(23): 87-92.
[4] 陈诚, 任庆功, 徐庆瑞, 等. 板栗壳活性炭对重金属离子吸附性能研究[J]. 离子交换与吸附, 2014(1): 29-38. DOI:10.16026/j.cnki.iea.2014.01.007.
CHEN C, REN Q G, XU Q R, et al. Adsorption of heavy metal ions by chestnut shell activated carbon[J]. Ion Exchange and Adsorption, 2014(1): 29-38.
[5] PONGTHORNPRUEK S, SASITHARANUWAT A. The utilization of bamboo residues and grease waste for charcoal briquette production[J]. Applied Mechanics and Materials, 2019, 886. DOI:10.4028/www.scientific.net/AMM.886.154.
[6] 陈培珍, 刘俊劭, 江慧华. 吸附法降低室内甲醛的研究[J]. 武夷学院学报, 2012, 31(2): 33-36. DOI:10.14155/j.cnki.35-1293/g4.2012.02.011.
CHEN P Z, LIU J S, JIANG H H. Study on decrease in door formaldehyde by adsorption method[J]. Journal of Wuyi University, 2012, 31(2): 33-36.
[7] SAKUMA M, AMANO Y, MACHIDA M. Water vapor adsorption-desorption properties of bamboo charcoals prepared by air oxidation following low temperature carbonization[J]. Carbon, 2012, 50(10): 3965-3966. DOI:10.7209/tanso.2012.47.
[8] DANTAS T N, NETO A A, DANTAS, et al. Removal of chromium from aqueous solutions by diatomite treated with microemulsion[J]. Water Research, 2001, 35(9): 2219-2224. DOI:10.1016/S0043-1354(00)00507-8.
[9] 邹艳红, 刘洪波, 傅玲, 等. 热解温度对氧化石墨的结构与导电性能的影响[J]. 硅酸盐学报, 2006, 34(3): 318-323. DOI:10.14062/j.issn.0454-5648.2006.03.012.
ZOU Y H, LIU H B, FU L, et al. Influence of pyrolytic temperature on structures and properties of graphite oxide[J]. Journal of the Chinese Ceramic Society, 2006, 34(3): 318-323.
[10] LU S, BLANCO C, APPLEYARD S, et al. Texture studies of carbon and graphite tapes by XRD texture goniometry[J]. Journal of Materials Science, 2002, 37(24): 5283-5290. DOI:10.1023/A:1021016822528.
[11] 张文标. Fe3+/TiO2改性竹炭催化降解甲醛[J]. 林业科学, 2012, 48(4): 113-118. DOI:10.11707/j.1001-7488.20120419.
ZHANG W B. Catalytic degradation of formaldehyde with Fe3+/TiO2 modified bamboo charcoal[J]. Scientia Silvae Sinicae, 2012, 48(4): 113-118.
[12] LI S, LI D, SU F, et al. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions[J]. Applied Surface Science, 2014, 317(3): 724-729. DOI:10.1016/j.apsusc.2014.08.184
[13] LONG W, LAN H F, HUANG Y F. Evaluation of formaldehyde adsorption by bamboo charcoal using a photoacoustic method[J]. Journal of Wood Science, 2010, 56(4): 345-349. DOI:10.1007/s10086-009-1113-6.
[14] ZHU S, HAN D, MING Z, et al. Ammonia enhanced electrokinetics coupled with bamboo charcoal adsorption for remediation of fluorine-contaminated kaolin clay[J]. Electrochimica Acta, 2016(198): 241-248. DOI:10.1016/j.electacta.2016.03.033.
[15] 白翔. 竹基活性炭的制备及其电化学性能的研究[D]. 北京: 北京化工大学, 2008.
BAI X. Preparation and electrochemical performances of activated carbon electrodes from bamboo[D]. Beijing: Beijing University of Chemical Technology, 2008.
[16] LIAO P, YUAN S, XIE W, et al. Adsorption of nitrogen-heterocyclic compounds on bamboo charcoal:kinetics, thermodynamics, and microwave regeneration[J]. Journal of Colloid & Interface Science, 2013, 390(1): 189-195. DOI:10.1016/j.jcis.2012.09.037.


收稿日期:2019-05-13 修回日期:2019-10-10
基金项目:广西科技计划(桂科AC17195011/AD17195023); 桂林市科学研究与技术开发计划(20170113-14)。
更新日期/Last Update: 2019-12-10