参考文献/References:
[1] 周鸣川. 脉宽调制(PWM)变量喷雾及视觉辅助对靶植保技术研究[D]. 杭州: 浙江大学, 2015.
ZHOU M C. Pulse width modulation variable spray and target spray based on computer technology research[D]. Hangzhou: Zhejiang University, 2015.
[2] 王广莲, 张颖鑫. 现阶段植保机械和施药技术研究[J]. 吉林农业, 2019(3): 43. DOI:10.14025/j.cnki.jlny.2019.03.009.
WANG G L, ZHANG Y X. Research on plant protection machinery and pesticide application technology at the present stag[J]. Agriculture of Jilin, 2019(3): 43.
[3] 韩景红. 我国植保机械和施药技术的现状问题及对策[J]. 农业与技术, 2018, 38(12): 91.
HAN J H. Current problems and countermeasures of plant protection machinery and pesticide application technology in China[J]. Agriculture and Technology, 2018, 38(12): 91.
[4] 吴向辉, 何难. 农业部首次公布化肥、农药利用率数据[J]. 农化市场十日讯, 2016(3): 7.
WU X H, HE N. Ministry of Agriculture published data on fertilizer and pesticide utilization for the first time[J]. Journal of Agricultural Market, 2016(3): 7.
[5] ROSELL J R, SANZ R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities[J]. Computers and Electronics in Agriculture, 2012, 81: 124-141. DOI:10.1016/j.compag.2011.09.007.
[6] LEE W S, ALCHANATIS V, YANG C, et al. Sensing technologies for precision specialty crop production[J]. Computers and Electronics in Agriculture, 2010, 74(1): 2-33. DOI:10.1016/j.compag.2010.08.005.
[7] 丁为民, 赵思琪, 赵三琴, 等. 基于机器视觉的果树树冠体积测量方法研究[J]. 农业机械学报, 2016, 47(6): 1-10, 20. DOI:10.6041/j.issn.1000-1298.2016.06.001.
DING W M, ZHAO S Q, ZHAO S Q, et al. Measurement methods of fruit tree canopy volume based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 1-10, 20.
[8] 许林云, 张昊天, 张海锋, 等. 果园喷雾机自动对靶喷雾控制系统研制与试验[J]. 农业工程学报, 2014, 30(22): 1-9. DOI:10.3969/j.issn.1002-6819.2014.22.001.
XU L Y, ZHANG H T, ZHANG H F, et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the CSAE, 2014, 30(22): 1-9.
[9] 张美娜, 吕晓兰, 雷哓晖. 可移植的对靶喷雾控制系统设计与试验[J]. 江苏农业学报, 2017, 33(5): 1182-1187. DOI:10.3969/j.issn.1000-4440.2017.05.034.
ZHANG M N, LYU X L, LEI X H. Design and testing on a transplantable target spraying control system for the spraying machine[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(5): 1182-1187.
[10] ZHENG J Q, JIA Z C, ZHOU B, et al. Real-time mosaicing system and distance detection based on dynamic tree image sequence[J]. Scientia Silvae Sinicae, 2014, 50(5): 82-89.
[11] GILES D K, KLASSEN P, NIEDERHOLZER F J A, et al. “Smart” sprayer technology provides environmental and economic benefits in California orchards[J]. California Agriculture, 2011, 65(2): 85-89. DOI:10.3733/ca.v065n02p85.
[12] LLORENS J, GIL E, LLOP J, et al. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods[J]. Sensors, 2011, 11(2): 2177-2194. DOI:10.3390/s110202177.
[13] 翟长远, 赵春江, 王秀, 等. 树型喷洒靶标外形轮廓探测方法[J]. 农业工程学报, 2010, 26(12): 173-177.
ZHAI C Y, ZHAO C J, WANG X, et al. Probing method of tree spray target profile[J]. Transactions of the CSAE, 2010, 26(12): 173-177.
[14] PALLEJA T, TRESANCHEZ M, TEIXIDO M, et al. Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner[J]. Agricultural and Forest Meteorology, 2010, 150(11): 1420-1427. DOI:10.1016/j.agrformet.2010.07.005.
[15] SOLANELLES F, ESCOLà A, PLANAS S, et al. An electronic control system for pesticide application proportional to the canopy width of tree crops[J]. Biosystems Engineering, 2006, 95(4): 473-481. DOI:10.1016/j.biosystemseng.2006.08.004.
[16] CHEN Y, ZHU H P, OZKAN H E. Development of LIDAR-guided sprayer to synchronize spray outputs with canopy structures[C]//2011 Louisville, Kentucky, August 7-August 10, 2011, St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. DOI:10.13031/2013.37206.
[17] CHEN Y, OZKAN H E, ZHU H, et al. Spray deposition inside tree canopies from a newly developed variable-rate air-assisted sprayer[J]. Transactions of the ASABE, 2013:1263-1272. DOI:10.13031/trans.56.9839.
[18] LIU H, ZHU H, CHEN Y.Development of digital flow control system for multi-channel variable-rate sprayers[J]. Transactions of the ASABE, 2014, 57(1): 273-281.
[19] ESCOLà A, ROSELL-POLO J R, PLANAS S, et al. Variable rate sprayer.Part 1-orchard prototype:design, implementation and validation[J]. Computers and Electronics in Agriculture, 2013, 95:122-135. DOI:10.1016/j.compag.2013.02.004.
[20] CAI J C, WANG X, SONG J, et al. Development of real-time laser-scanning system to detect tree canopy characteristics for variable-rate pesticide application[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6): 155-163. DOI:10.25165/j.ijabe.20171006.3140.
[21] 胡培, 张文爱, 王秀, 等. 基于激光传感器检测树冠大小的实验平台设计[J]. 中国农机化学报, 2015, 36(5): 227-230. DOI:10.13733/j.jcam.issn.2095-5553.2015.05.055.
HU P, ZHANG W A, WANG X, et al. Experimental platform design for detecting tree canopy volume based on laser scanning sensor[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5): 227-230.
[22] 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1): 70-76. DOI:10.11975/j.issn.1002-6819.2017.01.009.
LI L L, HE X K, SONG J L, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the CSAE, 2017, 33(1): 70-76.
[23] 刘慧, 夏伟, 沈跃, 等. 基于实时传感器的精密变量喷雾发展概况[J]. 中国农机化学报, 2016, 37(3): 238-244, 260. DOI:10.13733/j.jcam.issn.2095-5553.2016.03.052.
LIU H, XIA W, SHEN Y, et al. Development overview of precision variable spraying based on real-time sensor technology[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 238-244, 260.
[24] GILES D K, COMINO J A. Droplet size and spray pattern characteristics of an electronic flow controller for spray nozzles[J]. Journal of Agricultural Engineering Research, 1990, 47:249-267. DOI:10.1016/0021-8634(90)80045-V.
[25] LIU H, ZHU H P, CHEN Y, et al. An electronic flow control system for a variable-rate tree sprayer[J]. Transactions of the ASABE, 2012, 3:1124-1134.
[26] 蒋焕煜, 周鸣川, 童俊华, 等. 基于卡尔曼滤波的PWM变量喷雾控制研究[J]. 农业机械学报, 2014, 45(10): 60-65. DOI:10.6041/j.issn.1000-1298.2014.10.010.
JIANG H Y, ZHOU M C, TONG J H, et al. PWM variable spray control based on Kalman filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 60-65.
[27] 邹伟, 王秀, 宋健, 等. 喷头流量控制试验台的设计与试验[J]. 中国农机化学报, 2016, 37(10): 61-65. DOI:10.13733/j.jcam.issn.2095-5553.2016.10.015.
ZOU W, WANG X, SONG J, et al. Design and experiment of a test bench for nozzle flow controlling[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 61-65.
[28] YANG C. A variable rate applicator for controlling rates of two liquid fertilizers[J]. Applied Engineering in Agriculture, 2001, 17(3): 409-417. DOI:10.13031/2013.6203.
[29] JEON H Y, ZHU H. Development of a variable-rate sprayer for nursery liner applications[J]. Transactions of the ASABE, 2012, 55(1): 303-312. DOI:10.13031/2013.41240.
[30] CHEN Y, ZHU H, OZKAN H E. Development of a variable-rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures[J]. Transactions of the ASABE, 2012, 55(3): 773-781. DOI:10.13031/2013.41509.
[31] SHEN Y, ZHU H, LIU H, et al. Delay times of a LiDAR-guided precision sprayer control system[C]∥ASABE Annual International Meeting, Kansas City, Missouri, 2013:1741-1749. DOI:10.13031/aim.20131594649.