参考文献/References:
[1] 钱帅, 林健, 唐保山. 用熔融法固化生活垃圾焚烧灰渣并制备泡沫玻璃[J]. 硅酸盐学报, 2014, 42(1): 108-112. DOI:10.7521/j.issn.0454-5648.2014.01.19.
QIAN S, LIN J, TANG B S. Preparation of glass foams from vitrified municipal solid waste incinerator ash[J]. Journal of the Chinese Ceramic Society, 2014, 42(1): 108-112.
[2] 李晓勇, 朱建斌, 胡雨燕. 焚烧灰渣物理化学性质的研究进展[J]. 上海应用技术学院学报, 2008, 8(2): 116-121. DOI:10.3969/j.issn.1671-7333.2008.02.010.
LI X Y, ZHU J B, HU Y Y. Research progress on physicochemical properties of incinerated ash[J]. Journal of Shanghai Institute of Applied Technology, 2008, 8(2): 116-121.
[3] 田志鹏, 田海燕, 张冰如. 城市生活垃圾焚烧飞灰物化性质及重金属污染特性[J]. 环境污染与防治, 2016, 38(9): 80-85. DOI:10.15985/j.cnki.1001-3865.2016.09.015.
TIAN Z P, TIAN H Y, ZHANG B R. The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration[J]. Environmental Pollution and Control, 2016, 38(9): 80-85.
[4] 苏蓉. 生活垃圾焚烧飞灰的处理[J]. 广州化工, 2016, 44(24): 104-106. DOI:10.3969/j.issn.1001-9677.2016.24.036.
SU R. Treatment of fly ash from domestic waste incineration[J]. Guangzhou Chemical Industry, 2016, 44(24): 104-106.
[5] 郝玉, 徐宏勇, 柏舸, 等. 垃圾焚烧飞灰中Cd、Pb、Zn的螯合稳定与水泥固化处理[J]. 环境工程学报, 2018, 12(8): 2357-2362. DOI:10.12030/j.cjee.201803036.
HAO Y, XU H Y, BAI G, et al. Stabilization/solidification of Cd, Pb and Zn in municipal solid waste incineration(MSWI)fly ash with chelating agent and cement[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2357-2362.
[6] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. DOI:10.11779/CJGE201604008.
HE J, CHU J, LIU H L, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653.
[7] 高炎旭. 微生物诱导碳酸盐沉淀(MICP)团聚化垃圾焚烧飞灰试验研究[D]. 杭州: 浙江理工大学, 2017.
GAO Y X. Microbial induced carbonate precipitation(MICP)agglomeration of fly ash from waste incineration[D]. Hangzhou: Zhejiang University of Technology, 2017.
[8] DEJONG J T, SOGA K, BANWART S A, et al. Soil engineering in vivo:harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions[J]. Journal of the Royal Society Interface, 2011, 8(54): 1-15. DOI:10.1098/rsif.2010.0270.
[9] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
[10] VAN PAASSEN L A. Biogrout ground improvement by microbial induced carbonate preci-pitation[D]. Delft Netherlands: Delft University of Technology, 2009.
[11] VAN PAASSEN L A, GHOSE R, VAN DER LINDE T J, et al. Quantifying biomediated ground improvement by ureolysis:large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. DOI:10.1061/(ASCE)GT.1943-5606.0000382.
[12] 李驰, 刘世慧, 周团结, 等. 微生物矿化风沙土强度及孔隙特性的试验研究[J]. 力学与实践, 2017, 39(2): 165-171, 184. DOI:10.6052/1000-0879-16-286.
LI C, LIU S H, ZHOU T J, et al. The strength and porosity properties of MICP-treated aeolin sandy soil[J]. Mechanics in Engineering, 2017, 39(2): 165-171, 184.
[13] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. DOI:10.11779/CJGE201801002.
LIU H L, XIAO P, XIAO Y, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45.
[14] SOON N W, LEE L M, KHUN T C, et al. Improvements in engineering properties of soils through microbial-induced calcite precipitation[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 718-728. DOI:10.1007/s12205-013-0149-8.
[15] 彭邦阳, 赵志峰. 表面入渗法诱导碳酸钙沉积加固海相粉土研究[J]. 林业工程学报, 2018, 3(5): 136-141. DOI:10.13360/j.issn.2096-1359.2018.05.021.
PENG B Y, ZHAO Z F. Improvement of marine silt by microbial induced calcite precipitation by surface percolation[J]. Journal of Forestry Engineering, 2018, 3(5): 136-141.
[16] MORTENSEN B M, HABER M J, DEJONG J T, et al. Effects of environmental factors on microbial induced calcium carbonate pre-cipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349. DOI:10.1111/j.1365-2672.2011.05065.x.
[17] 李沛豪, 屈文俊. 细菌诱导碳酸钙沉积修复混凝土裂缝[J]. 土木工程学报, 2010, 43(11): 64-70. DOI:10.15951/j.tmgcxb.2010.11.013.
LI P H, QU W J. Remediation of concrete cracks by bacterially-induced calcium carbonate deposition[J]. Journal of Civil Engineering, 2010, 43(11): 64-70.
[18] 邵光辉, 侯敏, 刘鹏. MICP固化粉土细菌的分布和固定规律研究[J]. 林业工程学报, 2019, 4(1): 128-134. DOI:10.13360/j.issn.2096-1359.2019.01.019.
SHAO G H, HOU M, LIU P. Distribution and fixation characteristics of microorganism in MICP treated silt column[J]. Journal of Forestry Engineering, 2019, 4(1): 128-134.
[19] HARKES P H, BOOSTER J L, VAN PAASSEN L A, et al. Microbial induced carbonate precipitation as ground improvement method-bacterial fixation and empirical correlation CaCO3 vs.strength[C]//Proceedings of 1st International Conference on Bio-Geo-Civil Engineering. Delft:[s.n.], 2008:37-44.
[20] CHU J, IVANOV V, NAEIMI M, et al. Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica, 2014, 9(2): 277-285. DOI:10.1007/s11440-013-0278-8.
[21] QABANY A A, SOGA K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Geotechnique, 2013, 63(4): 331-339. DOI:10.1680/geot.SIP13.P.022.
[22] 薛双. 微生物注浆固化粉土空间均匀性与尺寸效应研究[D]. 南京: 南京林业大学, 2017.
XUE S. Study on spatial uniformity and size effect of silt solidified by microbial grouting[D]. Nanjing: Nanjing Forestry University, 2017.